	
	Electron

Starter Pack

INTERMEDIATE LEVEL

Developed by Ken Bodley,

Doug Brown, Brian Samways

Birmingham Educational

Computing Centre

Acknowledgements

The compilers and publishers would like to thank Tony Byrne-Jones, Bill Davies and Jackie Samways who trialled and tested the material, and Andy Neenan for the photographs.
Introduction

This 'Starter Pack' shows you how to program your Electron computer. It is the second part of a courses designed to get you started in the fascinating world of the computer. It will not turn you into a computer expert, but it will set you on the right road.

The Beginners and Intermediate Level Starter Packs start you off in an easy-to-use informal manner which makes learning fun. Your Electron computer acts as a friendly tutor, giving you lots of examples to try, and introducing new fun ideas. Your book will summarise various points, act as a quick reference to the work covered and provide space for you to write down your answers to the computer's questions. Your book and computer will work together to teach you as painlessly as possible, in an informal manner which we hope you will enjoy. Learning with your computer should be fun. Make mistakes. Try to make your computer go wrong if you can. Do not be afraid of mistakes. They will help you learn.

We hope you have already bought and enjoyed 'Electron Starter Pack, Beginners' and that this has whetted your appetite for 'Electron Starter Pack, Intermediate Level'. The main points covered in 'Electron Starter Pack, Beginners' are listed below. If you have decided not to buy it, you are missing out on lots of fun ideas.

Good luck.

Summary of points covered in 'Electron Starter Pack, Beginners'
PRINT with messages and arithmetic; Combining information with PRINT; How to LIST programs; How to RUN programs; Dry runs; How to clear the screen (CLS); How to clear the computer with NEW; Don't panic with OLD; The use of ESCAPE; What are keywords?; How to RENUMBER your program; The use of BREAK; Changing program line numbers; Using string variables; Problems with INPUT; What are numeric variables?; Repeating instructions with FOR-NEXT loops; What TIME is it?; Understanding Integer variables; Repeating instructions with REPEAT-UNTIL; What are NULL strings?; Plus lots of examples, quizzes and games.

Contents

	1
	
	The Electron Micro
	5

	
	
	
	Setting up the Electron computer
	

	
	
	
	
	

	
	2
	
	Entering a Program
	7

	
	
	
	Instructions END
	

	
	
	
	Commands AUTO
	

	
	
	
	Using multi-instruction lines
	

	
	
	
	
	

	
	3
	
	Program Care
	10

	
	
	
	Commands SAVE, *CAT, LOAD, CHAIN
	

	
	
	
	Editing a program
	

	
	
	
	
	

	
	4
	
	Program Clarity
	19

	
	
	
	Instructions REM
	

	
	
	
	Using 'page' mode
	

	
	
	
	
	

	
	5
	
	Making Decisions
	22

	
	
	
	IF, THEN, ELSE, UNTIL FALSE
	

	
	
	
	Using rogue values, TRUE and FALSE conditions
	

	
	
	
	
	

	
	6
	
	Extending Decisions
	27

	
	
	
	IF, THEN, ELSE with AND and OR
	

	
	
	
	
	

	
	7
	
	Example Decisions
	33

	
	
	
	
	

	
	8
	
	Problems to Program
	36

	
	
	
	Planning and writing programs
	

	
	
	
	
	

	
	9
	
	Experimenting
	46

	
	
	
	RND, GOTO
	

	
	
	
	
	

	
	10
	
	Print Controls
	52

	
	
	
	Use of TAB function
	

	
	
	
	
	

	
	11
	
	Examples
	59

	
	
	
	Abbreviating keywords
	

	
	
	
	
	

	
	12
	
	Forward Looking
	61

	
	
	
	A look at string handling, testing and control, colour and graphics, sound
	

1. The Electron Micro

Your Electron computer system consists of four parts, connected up as shown below.
[image: image1.png]13ampmains _ Electron mains
Muliblock adaptor (2)

| L [

Computer (1)

The connections are explained in the Starter Pack for Beginners, but the main parts are summarised below.

1.
The cassette recorder, TV and keyboard and computer all need to be plugged into the power supply (230/250 volts, a.c.); we recommend using a multiblock, as shown.

2.
Your computer is connected to the mains power supply via the Electron mains adaptor, which is plugged into the socket marked '19 V.A.C. POWER IN'.

3.
If you use a normal TV connect it up using the black aerial lead provided. The end with the centre sticking out the plugs into your Electron computer, at the socket marked 'UHF TV'. Tune your TV to around 36, using its dial or spare push button.

4.
If you are using a video monitor connect it to the socket marked 'VIDEO'. You will need a special lead.

5.
The cassette recorder is connected to your Electron by a '7 pin DIN plug', wired as follows:

[image: image2.png].and 7 are motor contr
1.and 4 are output

25 set 10 0 volts

3is input

If in doubt, ask at your local computer or video shop.

6.
Set the cassette recorder's volume as follows:

(a)
Set the tone control of your recorder to maximum.

(b)
Rewind your Starter Pack tape to the beginning.

(c)
Press BREAK and type CHAIN"START" RETURN

(d)
Press 'Play' or its equivalent on your recorder.

(e)
Adjust your recorder's volume control until your computer tells you it is properly set. Your computer will have loaded Chapter 2 and will tell you what to do next.

Note the following points concerning your Electron.

1.
SHIFT allows you to type capital letters and the character on the upper part of any key.

2.
DELETE rubs out the last character typed.

3.
Repeat any character by holding the key down.

4.
Holding down SHIFT and pressing CAPS LK/FUNC locks the keyboard onto capital letters.

5.
RETURN sends information from the screen to the computer.

6.
> means the computer is waiting for you.

7.
The flashing '_' shows you where you are typing on the screen.

8.
BREAK clears the computer of all information you have entered and starts you off again from the beginning.

See you in Chapter 2.
2. Entering a Program

SUMMARY
-
Instructions END

Commands AUTO

Using multi-instruction lines

CONTENTS
-
a.
Introducing AUTO

b.
Experiment 1, introducing END

c.
Experiment 2, with AUTO

d.
Experiment 3, with AUTO

e.
More about RENUMBER

f.
Shortening your program using multi-instruction lines

Set up your computer as shown in Chapter 1. Load the first program by rewinding the cassette tape to the beginning and typing CHAIN"CH2" RETURN. In all chapters, it is possible to skip forwards by pressing ESCAPE or backwards by pressing SHIFT and ESCAPE.

a.
In this chapter we will look at ways of making life easier for you, the computer programmer. As your programs become more complicated you will want to spend more time concentrating on the programming ideas and less on the more boring tasks, like having to keep typing in the program line numbers. The computer is quite capable of working out its own line numbers using a new command, AUTO, which gives you automatic line numbering. To demonstrate this feature, we are going to turn you into a super-fast typist. Try the following experiments.

b.
Experiment 1

Type NEW RETURN to clear the computer. Then type your first line number followed by SPACE (hold it down) for each instruction character. When you come to the end of the line, press RETURN. Repeat this for each line, you will soon get the idea. You will know the program has finished when you get the instruction END printing. END tells the computer it has reached the end of the program. You can then LIST and RUN the program.

c.
Experiment 2

Now we will try the same experiment with AUTO, so there will be no need to type any line numbers, just SPACE for each character and RETURN at the end of each line. Type NEW RETURN to clear the computer and then AUTO RETURN to start off your line numbering. To finish AUTO, after the END instruction, press ESCAPE. Then LIST and RUN the program.

d.
Experiment 3

With AUTO, you don't have to start at line 10 and go up in tens. You can put two numbers after AUTO, separated by a comma, where the first number tells the computer what line number to start at and the second number tells it what to go up by for the next line number. For example, AUTO 27,8 will start the program at line 27 and then go up in 8's, giving lines numbered 27, 35, 43, 51, etc.

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	We can make AUTO more flexible.

See experiment 3 in your book.

d.

>NEW

>AUTO 27,8

27 CLS

35 FOR DOWN=1 TO 10

43 PRINT

51 NEXT DOWN

59 PRINT" TTTTT H H_
	
	

To try this, repeat the last experiment by typing NEW RETURN and then AUTO, followed by any two numbers separate by a comma and RETURN, Again, use ESCAPE to finish after the END instruction and then LIST RETURN and RUN RETURN. Repeat the experiment as often as you like, using different values after AUTO.

e.
More on RENUMBER

In 'Starter Pack, Beginners' we used the command RENUMBER to renumber a program with line numbers 10, 20, 30, 40, 50 and so on. Well, if you want, you can put two numbers after the RENUMBER command, separated by a comma as with AUTO, to start renumbering from any line number and going up by whatever you choose. For example, RENUMBER 13, 6 will renumber the program starting at line 13 and going up in 6's for each subsequent line.

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	Remember RENUMBER? We can use this

feature with RENUMBER as well as AUTO.

Your book will explain.

e.

>RENUMBER 13,6

>_
	
	

Try this by typing RENUMBER followed by any two numbers separated by a comma and RETURN. LIST and RUN the program to see the effect. Repeat this experiment as often as you like, using different values after RENUMBER.

f.
Shortening your program

Programs can be shortened by putting more than one instruction on a line, which can save you typing time and make the program easier to follow, as we will see later. To see this, type NEW RETURN, followed by LIST RETURN. This will give you the previous program in a shortened form. Try it.

Well done, you have now finished this chapter.

If you want to write and test your own programs, type BYE RETURN to disconnect you from the Starter Pack then NEW RETURN to clear the computer. You will then have the computer all to yourself. To carry on with the next chapter, type CHAIN"CH3" RETURN and press 'Play' on your recorder.

See you in Chapter 3.

3. Program Care

SUMMARY
-
Commands SAVE, *CAT, LOAD, CHAIN

Editing a program

CONTENTS
-
a.
Editing with the screen editor

b.
Inserting with the screen editor

c.
Replacing with the screen editor

d.
Saving your program on cassette

e.
Security copies

f.
Tape checking with *CAT

g.
Loading programs from cassette

h.
Changing programs

Load Chapter 3 by positing the cassette tape somewhere before the start of Chapter 3 and typing CHAIN"CH3" RETURN. Throughout the chapter you can skip forwards by pressing ESCAPE or backwards by pressing SHIFT and ESCAPE.

a.
Editing a line (the screen editor)

In this section we are going to use ←, →, ↑ and ↓ on the top right-hand side of the keyboard, to edit (change) part of a line. Press and hold each key in turn to see how they work. Notice how you can move the flashing '_' (called the editing cursor) to any part of the screen, and also notice the white square which is left behind to remind you where you had got to.

Type NEW RETURN to clear the computer. Notice that the editing cursor has now replaced the white square again. A program has been put into the computer for you. Type LIST RETURN to see it. Dry run it and then RUN it to see if you are right.

Dry run__

b.
Inserting (putting in extra information)

To insert (put in) the missing " carry on as follows:

1.
Type LIST RETURN.

2.
Press ↑ to move the editing cursor up to line 10. (If you go up too far, use ↓ to bring it down.)

3.
Press COPY ten times. Notice that as you do so whatever is above the editing cursor is copied by the white square.

4.
Carry on pressing COPY (hold it down) until you reach the W in Wolves. Do not copy the W. (If you do by mistake, press DELETE and ←.)

5.
Press SHIFT and 2.

6.
Press and hold COPY until you reach the end of the program line. (Don't worry if you need more than one screen line.)

7.
Press RETURN.

8.
Type LIST RETURN to check your correction.

RUN the modified program to check that it works and then carry on with the next section, 'Replacing'.

c.
Replacing (changing part of a program line)

You may not agree that 'Wolves are the greatest', so now you can replace 'Wolves' with something else, as follows:

1.
Type LIST RETURN.

2.
Use ↑ and ↓ to line up the editing cursor with line 10.

3.
Press COPY until the editing cursor is under the W of Wolves.

4.
Type in any name you like.

5.
Press → six times to move the editing cursor to the first space after Wolves.

6.
Press and hold COPY until you reach the end of the program line, which may be more than one screen line.

7.
Press RETURN.

8.
Type LIST RETURN to check your correction.

RUN the modified program to check that it works and then carry on as follows.

If you have got this far, you are doing well. Now change the program, using the screen editor, to repeat the message 50 times, one after the other (use the ;) all over the screen. If you get stuck just press RETURN, LIST the program again and then chance the program to whatever you want, using the REPLACING procedure described above.

You can move on to the next section at any time by pressing and holding CAPS LK/FUNC and pressing 0 at the same time. This is known as the function key f0. (FUNC on CAPS LK/FUNC means 'function', and f0 is on the front of 0.)

__

d.
How to save your program on cassette

With your Electron computer, you can save programs on cassette tape, to be used later, in much the same way as you would record music on a cassette. The basic rules for recording computer programs are the same as for recording your favourite music.

1.
You cannot record on leader tape, found at the start and end of some cassette tapes to fasten the tape onto the tape spools. This leader tape is normally a different colour to the main tape so you can avoid it.

2.
Always leave a small gap of blank tape between programs. You cannot overlap programs without losing part of one of them.

3.
To record, the 'record' button must be pressed on the cassette recorder.

4.
The record level is set automatically on most modern recorders, so there is no need to adjust the volume or tone controls.

5.
Keep a note of what is recorded where on your cassette tape, in case you forget. (Use your cassette recorder's tape counter if it has one.)

6.
Use only good quality cassette tapes.

These points apply to recording music as well as computer programs, but with computer programs you have the extra problem of getting the computer and cassette recorder to work together even though you cannot hear what is being recorded. Because of this, you computer uses visual signals on the screen to tell you what is happening.

We will take you through the procedure for saving your program a step at a time, so you can become familiar with it. But we will not actually record anything, as your 'Starter Pack' tape is in your recorder at the moment.

We are going to pretend to save the program you have just modified. The only different will be that you will not actually press the 'record' button on the cassette recorder. The cassette recorder is always connected as it is now, but with a cassette tape correctly positioned to record your program. Make a note of where you are on the tape (using the recorder's tape counter if it has one) and carry one as follows.

1.
Type SAVE"Name" RETURN, where 'Name' is the name of the program. This can be any string of characters without spaces or punctuation, but always starting with a letter of the alphabet and no more than ten characters.

2.
You now have the message RECORD then RETURN on your screen. (Normally you would now press RECORD on your cassette recorder but do not do this, since we are only pretending.) Pretend to press the RECORD key on your cassette recorder and press RETURN on your computer.

3.
The name of the program you need in the above SAVE command will appear on the left hand side of the screen with numbers to the right of it, something like this:

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	d.

>SAVE"Test"

RECORD and RETURN

Test 15_
	
	

4.
Wait until your computer sounds a 'bleep'. Stop your cassette recorder (it will stop itself if it has motor control) and make sure it is no longer set to 'record'. Make a note of where you are on the tape (use the recorder's tape counter if it has one).

__

e.
Security copies

You have now finished saving your program and should have a copy of it on tape, and a note of when it starts and finished (using the tape counter). Notice the word should. Cassette recorders are mechanical and mechanical things go wrong. Therefore, the wise programmer always makes at least two copies of his program, where the second copy is known as a security copy; just repeat steps 1 to 4 above. Try then again now.

__

f.
Tape checks

You probably think that now you have a safe copy of your program. But a wise programmer will make another check. There's a well used phrase in computing 'If you think you're right, you're wrong'. To be right, you must know you're right. To know you're right, you must check what is on the tape. The computer will do this for your with the command

*CAT
(CAT is short for catalogue)

*CAT will read programs from tape and check they are error free. As it does, it will tell you on the screen what it finds. You can use *CAT at any time to check any tape. It will not affect anything inside the computer itself. This can be useful when you forget what computer programs you have saved on a tape. If you rewind it to the beginning, *CAT will check all the way through and tell you what programs there are and if there are any recording errors. We can demonstrate this with your Starter Pack tape as follows.

1.
Rewind the Starter Pack tape in your recorder. If you rewind to the beginning, the test will take a long time. To shorten the test, rewind for about five seconds. It's not critical. (Remember, if your recorder has motor control you may have to disconnect it to rewind.)

2.
Type *CAT RETURN on your computer.

3.
Press 'play' or its equivalent on your recorder. A program name will appear on the left hand side of the screen followed by a 'Block' number. Programs are put (dumped is the technical word) onto tape in blocks of 256 characters. *CAT counts these blocks in base 16 (hexadecimal). Computer prefer base 16. Humans prefer base 10 for their sums. If bases confuse you, don't worry, you don't need to understand them to use the computer.

4.
Stop your recorder when STOP*CAT appears on the left hand side of the screen. If you go past STOP*CAT by accident, don't worry, simply rewind back to somewhere before it and start your recorder again.

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	f. Press the function key f8 when *CAT

 is complete.

>*CAT

CH3 12 12AA

CH3A 00 003B

CH3B 00 0068

STOP*CAT 00 0017
	
	

5.
Press ESCAPE to finish *CAT. Now press function key f0 to continue.

Remember 'function key f0' means press and hold CAPS LK/FUNC and press 0 at the same time.

You will notice two numbers on the screen after each program name. The first is the total number of blocks and the second the total number of characters in each program (both in base 16). Anything else indicates an error on the tape.

If, in section 1, you rewound the tape to the middle of a block then you probably got the messages Data? or Block?, which is the computer way of telling you that a block of the program is incomplete. Sometimes you may get errors caused by the volume setting on the recorder. So if you do get a tape error, check this first as follows.

Rewind, increase or decrease the volume setting and start the recorder again. Repeat this until either you get past the error or it becomes obvious there is a fault on the tape because you cannot get past the error with any volume setting. (Is your TONE setting on maximum treble?) In this case, use your security copy. If you didn't make a security copy, tough, you cannot correct tape errors.

There is no substitute for a good quality tape recorder with remote control and a tape counter. You must expect trouble with cheap equipment.

Having dumped your program, with a security copy, onto tape and checked it with *CAT, you can now be certain your work is safe, except of course if you leave it lying around for someone to read on, or the dog to chew. (Saving a program on tape does not affect what is in the computer at all, but turning off your computer or pressing BREAK will clear it of all the work you have done). The next stage is to get the program back into the computer when you need it at some later time. This is known as 'Loading a Program from tape'.

g.
Loading a program from tape

To demonstrate this, a simple program called 'TEST' has been put on your Starter Pack tape for you to load as follows.

1.
Position your tape somewhere before the program you want. (For this demonstration it should now be at the correct position without any adjustment.)

2.
Type LOAD"TEST" RETURN where 'TEST' is the name of the program you want to load. Your Electron computer will ignore all other programs it finds on the tape and only load the one you ask for. The message

Searching

will appear on the screen telling you it is trying to find the program you want ('TEST') the message

Loading

appears on the screen. When it has loaded the program you asked for, a 'bleep' will sound.

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	g.

>LOAD"Test"

Searching

Loading

TEST 00 0033

>_
	
	

4.
Stop your recorder (it will stop itself if it has motor control).

The program called 'TEST' is now in your computer. LIST and RUN it and then press function key f0 to continue. (Remember, function key f0' means press and hold CAPS LK/FUNC and press 0).

h
Chaining a program

You have already used this command to load chapters from your Starter Pack tape. It works the same as LOAD except that it does an automatic RUN as well. In effect it is a combined LOAD and RUN. CHAIN will search the tape for a particular program and when it finds it, LOADs and RUNs it. Since you have been using CHAIN for the last two chapters, we won't bother demonstrating it.

However, CHAIN is very useful when used as an instruction. It can be used as part of a program to automatically LOAD and RUN another program. You will, of course, lose the original program containing the CHAIN instruction. If you write a long program that is too big for your computer, then you can split it up into two or more parts and simply CHAIN the next part when it is needed. To be most effective you need a recorder with motor control otherwise you have to keep starting and stopping it manually.

Your computer has an example of a program using CHAIN as an instruction. To see it type NEW RETURN.

LIST and RUN it to see the effect of the CHAIN instruction. Press the function key f0 to continue. (Remember, function key f0 means press and hold CAPS LK/FUNC and press 0).

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	h.

>NEW

>LIST

10 PRINT"This program has CHAIN in it"

20 CHAIN "EXTRA"

If your recorder does not have motor

control you will have to start it

manually and stop it when a 'beep'

sounds.

RUN the program.

>RUN

This program has CHAIN in it

Searching

_
	
	

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	h.

>NEW

>LIST

10 PRINT"This program has CHAIN in it"

20 CHAIN "EXTRA"

If your recorder does not have motor

control you will have to start it

manually and stop it when a 'beep'

sounds.

RUN the program.

>RUN

This program has CHAIN in it

Searching

Loading

EXTRA 00 0039

This is the EXTRA program that has been

CHAINED

>LIST

 10 PRINT"This is the EXTRA program th

at has been CHAINED"

>RUN

This is the EXTRA program that has been

CHAINED

>_

You have now finished another chapter.

If you want to write and test your programs, type BYE RETURN and NEW RETURN. You will then have the computer all to yourself.

If you want to carry on with the next chapter type CHAIN "CH4" RETURN and press 'play' on your recorder, if it is not already pressed.
4. Program Clarity

SUMMARY
-
Instructions REM

Using 'page' mode

CONTENTS
-
a.
The REM instruction

Page mode and a reminder about integer

variables

Load Chapter 4 into your computer by using *CAT to find the end of Chapter 3 and then type CHAIN "CH4" RETURN.
Throughout this chapter, it is possible to skip forwards by pressing ESCAPE or backwards by pressing SHIFT and ESCAPE.
a
REM

This new instruction is short for REMark. It has no effect on the program. The computer ignores it but it is very useful for identifying various parts of your program. To demonstrate this, a program has been put into your computer for you to try. Type NEW RETURN to clear the computer and LIST RETURN to see this new program.

Note: For a long listing it is useful to use 'page' mode, which causes the computer to stop after a complete screen has been printed. You enter page mode by pressing CTRL and N (hold down CTRL and press N at the same time). Do this before the above LIST.

After the LIST, press CTRL and O to return the computer to its normal 'scrolling mode'.

When in page mode, move to the next page by pressing SHIFT. Try this a few times with the program you have been given.

Press CTRL and N.

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	creen

120 NEXT L%

130 CLS

Notice a larger program - but now it

makes sense. RUN it and LIST it as

often as you like. Type NEW to carry

on with the next section.

>LIST

1 REM Run a man across the screen

2 REM By A.N. AUTHOR

5 REM L% is distance across screen

10 FOR L%=1 TO 36 STEP 2

15 REM D% moves down the screen

20 CLS:FOR D%=1 TO 10:PRINT:NEXT D%

25 REM S% moves across the screen to the

 limit L%

26 REM Man standing

30 FOR S%=1 TO L%:PRINT" ";:NEXT S%:PRIN

T"O"

40 FOR R%=1 TO 3:FOR S%=1 TO L%:PRINT" "

;:NEXT S%:PRINT"I":NEXT R%

45 REM a short delay

50 FOR W=1 TO 20:NEXT W

55 REM Man running

60 CLS:FOR D%=1 TO 10:PRINT:NEXT D%

70 FOR S%=1 TO L%:PRINT" ";:NEXT S%:PRIN

T" O"

80 FOR S%=1 TO L%:PRINT" ";:NEXT S%:PRIN

T"'I'"

90 FOR S%=1 TO L%:PRINT" ";:NEXT S%:PRIN

T" I"

	
	

Press SHIFT.
	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	1 REM Run a man across the screen

2 REM By A.N. AUTHOR

5 REM L% is distance across screen

10 FOR L%=1 TO 36 STEP 2

15 REM D% moves down the screen

20 CLS:FOR D%=1 TO 10:PRINT:NEXT D%

25 REM S% moves across the screen to the

 limit L%

26 REM Man standing

30 FOR S%=1 TO L%:PRINT" ";:NEXT S%:PRIN

T"O"

40 FOR R%=1 TO 3:FOR S%=1 TO L%:PRINT" "

;:NEXT S%:PRINT"I":NEXT R%

45 REM a short delay

50 FOR W=1 TO 20:NEXT W

55 REM Man running

60 CLS:FOR D%=1 TO 10:PRINT:NEXT D%

70 FOR S%=1 TO L%:PRINT" ";:NEXT S%:PRIN

T" O"

80 FOR S%=1 TO L%:PRINT" ";:NEXT S%:PRIN

T"'I'"

90 FOR S%=1 TO L%:PRINT" ";:NEXT S%:PRIN

T" I"

100 FOR S%=1 TO L%:PRINT" ";:NEXT S%:PRI

NT"'I'"

105 REM a short delay

110 FOR W=1 TO 40:NEXT W

115 REM increase limit(L%) across the sc

reen

120 NEXT L%

130 CLS

>_

	
	

Press CTRL and O.

LIST and RUN the program as often as you like and type NEW RETURN when you are ready to move on.

a1
Integer variables __

 __
a2
Integer variables
Contents

 __
You have now finished another chapter. If you want to write and test your program, type BYE RETURN and then NEW RETURN. You will then have the computer all to yourself. If you want to carry on with the next chapter, type CHAIN"CH5" RETURN and press 'play' on your recorder, if it is not already pressed.
5. Making Decisions

SUMMARY
-
IF, THEN, ELSE, UNTIL FALSE

Using rogue values, TRUE and FALSE conditions

CONTENTS
-
a.
Making decisions: using IF, THEN

b.
Using IF THEN ELSE: introducing TRUE and FALSE

conditions

c.
UNTIL FALSE and rogue values

d.
Comparing numbers

e.
More rogue values and line numbers with IF

Find Chapter 5 by using *CAT and load it by typing CHAIN"CH5" RETURN. You can skip forwards with ESCAPE or backwards with SHIFT and ESCAPE.
a
Making decisions

IF instructs the computer to make a decision which is dependent on some CONDITION: to do something only IF this CONDITION is TRUE. We make decisions like this all the time. For example, when you cross the road, you make a decision: 'If the road is clear'. When this condition is TRUE (The road is clear) THEN you 'cross the road'. Your computer has a program to demonstrate this decision. Type LIST RETURN to see it and then RUN it with as many different replies as you like. Type NEW RETURN to move on to the next section.

a1
Changes ___

b
IF THEN ELSE

The IF THEN ELSE instruction allows the computer to make a decision on some CONDITION.

IF the CONDITION is TRUE then it does one thing.

IF the CONDITION is FALSE then it does something ELSE.

The instruction has three parts.

1.
The CONDITION, which always follows the word IF.

2.
What to do if the CONDITION is TRUE. This always follows the word THEN.

3.
What to do if the CONDITION is FALSE. This always follows the word ELSE. It can be missed out if you wish.

b1
In an examination, IF you score greater than 50, THEN you pass; anything ELSE fails. Your computer has a program to demonstrate this decision. Type LIST RETURN to see it and RUN it a few times with different scores. Type NEW RETURN to carry on when you have finished.

b2
Dry run ___

__

__

b3
Dry run ___

__

__

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	b3.

1 REM Identifying Names

5 REPEAT

10 INPUT"Enter a name",Name$

20 IF Name$="JEAN" THEN PRINT "HI ";Name

$:UNTIL FALSE

30 IF Name$="JOHN" THEN PRINT "Hello ";N

ame$:UNTIL FALSE

40 IF Name$="SUSAN" THEN PRINT "Hi There

 ";Name$:UNTIL FALSE

50 IF Name$="FRED" THEN PRINT "Watchya "

;Name$;UNTIL FALSE

60 IF Name$="CHRIS" THEN PRINT "How do y

ou do ";Name$:UNTIL FALSE

70 IF Name$="SARAH" THEN PRINT "Good Day

 ";Name$:UNTIL FALSE

80 PRINT "I don't know ";Name$

90 UNTIL Name$="END"

100 PRINT "Goodbye for now."

(UNTIL FALSE always loops to the last

REPEAT instruction)

RUN this program to test it

Remember "END" to stop it.

>_

	
	

c
UNTIL FALSE and rogue values

Notice in the last program there was only one REPEAT but seven UNTIL instructions. This is quite acceptable.

90 UNTIL Name$ = "END"

is telling the computer to keep on repeating until "END" is entered as a name, at which point it carries on to instruction 100 PRINT"Goodbye for now". All other UNTILs use UNTIL FALSE after a THEN. The UNTIL FALSE will always send the computer back to the last REPEAT instruction, which in this case is at the start of the program. You should find this a useful technique.

The program can be improved even more. "END" is entered to finish the program. This is known as a 'rogue value'. It is not a normal name (obviously) but is acting as a signal to tell the computer we want to stop this particular sequence of the program. After "END" is entered, we get the message "I don't know END", which doesn't make sense. A new line (80) in the program will solve this problem as follows.

80 IF Name$ <>"END" THEN PRINT"I don't know";Name$:UNTIL FALSE

The <> in this instruction means "NOT EQUAL TO", so the instruction reads, IF Name$ is not equal to "END" THEN PRINT, etc.

The only time this condition is FALSE is when Name$ = "END". When this happens, the computer will do nothing at line 80, since there is no ELSE, and will carry on to the next line (line 100).

The last program has been changed to include this instruction. Type LIST RETURN to see it, and then RUN it a few times. Type NEW RETURN to carry on with the next section.

__

d
Dry run ___

__

Type NEW RETURN to carry on with the next section.

__

e
Rogue values and line numbers with IF

A rogue Value is used to tell the computer it has come to the end of a sequence. A numeric rogue value is often difficult to choose, since whatever is chosen cannot be used for any normal comparison later on. For example, '0' (zero) would be a poor choice if you were comparing temperatures, since a temperature of zero is quite possible. A popular choice is 9999. But remember, this means you cannot then use 9999 for any comparison in your program.

In the last program, the extra instruction needed to test for this rogue value is:

15 IF Number1 = 9999 THEN 60

Where the 60 means line number 60. This instruction is saying 'If Number 1 is equal to the rogue value of 999, then go directly to line number 60'. This will cause problems, since line 60 does not exist. We need to include it in the program as a REM instruction. For example:

60 REM End of comparisons

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	e1.

>LIST

1 REM Repeated comparison of two numbers

5 REPEAT

10 INPUT"Enter any two numbers.Use 9999,

0 to end",Number1,Number2

15 IF Number1=9999 THEN 60

20 IF Number1=Number2 THEN PRINT "Number

s are equal"

30 IF Number1>Number2 THEN PRINT Number1

;" is larger"

40 IF Number1<Number2 THEN PRINT Number2

;" is larger"

50 PRINT:UNTIL FALSE

60 REM End of Comparisons.

70 PRINT"End of Comparisons"

(Remember UNTIL FALSE always loops to

 the last REPEAT).

>_

	
	

Whenever you use a line number in an IF instruction after THEN (or after ELSE) always put a REM at whatever line number you are sending the computer to. It will work if you don't but you're asking for trouble, since without the REM there is nothing to tell you which lines are being used by IF instructions. You might think you can remember, and you probably can in a small, simple program, but if you do it too often in a large complicated program you will forget which lines are used by which IF instructions. This can cause chaos when you start changing your program.

The golden rule is - try to avoid using line numbers as part of an IF instruction. If you must, then make sure the line numbers used refer to REM instructions.

Type LIST RETURN to see the last program changed to include this test for a rogue value. RUN the program a few times to see how it works. Remember, to end the program enter 9999 as the first number (and anything you like for the second).

Type NEW RETURN to carry on with the next section.

__

That is the end of another chapter. Type BYE RETURN and NEW RETURN to test your own programs. To carry on with the next chapter type CHAIN "CH6" RETURN and press 'play' on your recorder.

6. Extending Decisions

SUMMARY
-
IF, THEN, ELSE with AND and OR

CONTENTS
-
a.
Complicated dry runs

b.
AND and OR with IF

Find Chapter 6 by using *CAT and load it by typing CHAIN "CH6" RETURN. Throughout this chapter you can skip forwards with ESCAPE or backwards with SHIFT and ESCAPE.
a
Complicated dry runs

a2
To test this program properly you must consider every possible route through the program. With so many conditions being tested it is often difficult to spot all possibilities. How many are there in this program? Well, the program is finding the largest of any three numbers. So, using the numbers 1, 2 and 3 to test it, here are all the possible arrangements, entering the numbers in the order, First Number, Second Number and Third Number.

3, 2, 1 (1st number largest, 3rd number smallest)

Dry run ___

__

3, 1, 2 (1st number largest, 2nd number smallest)

Dry run ___

__

1, 3, 2 (2nd number largest, 1st number smallest)

Dry run ___

__

2, 3, 1 (2nd number largest, 3rd number smallest)

Dry run ___

__

2, 1, 3 (3rd number largest, 1st number smallest)

Dry run ___

__

1, 2, 3 (3rd number largest, 1st number smallest)

Dry run ___

__

1, 1, 1 (all numbers equal)

Dry run ___

__

2, 1, 1 (1st number largest, others equal)

Dry run ___

__

1, 2, 2 (1st number smallest, others equal)

Dry run ___

__

1, 2, 1 (2nd number largest, others equal)

Dry run ___

__

2, 1, 2 (2nd number smallest, others equal)

Dry run ___

__

1, 1, 2 (3rd number largest, others equal)

Dry run ___

__

2, 2, 1 (3rd number smallest, others equal)

Dry run ___

__

9999,0,0 (to finish program).

Notice each of these combinations has its own route through the program. All of these must work before you can claim the program works.

Notice also that, since you have proved it will work for all arrangements of 1, 2 and 3, you can now be sure it will work for any three numbers.

Now RUN this program to test all these combinations.

Type NEW RETURN to carry on with the next section.

a3
Dry run ___

__

__

Type NEW RETURN to carry on with the next section.
a4
Dry run ___

__

__

Type NEW RETURN to carry on with the next section.

b
AND and OR

In an IF instruction, conditions can be joined by using AND and OR.

AND:
When conditions are joined by AND, then all the conditions must be TRUE for the IF instruction to be TRUE, causing the computer to obey whatever follows THEN. If any one (or more) of the conditions is FALSE, then the IF instruction is FALSE, causing the computer to obey whatever follows ELSE (ELSE may be left out, of course).

OR:
When conditions are joined by OR, then any one (or more) of the conditions must be TRUE for the IF instruction to be TRUE, causing the computer to obey whatever is after THEN. Only when all the conditions are FALSE will the IF instruction be FALSE, causing the computer to obey whatever is after the ELSE.

CONDITIONS can be joined by a combination of AND's and OR's, which can make life quite complicated.

Here is an example.

The firing of a missile on a ship is controlled by three people, the 1st officer, the 2nd officer and the captain, using their own special keys. The captain can always fire it by himself if he chooses. Neither officer can fire it by himself but together they can fire it without the captain if they choose.

Let the computer decide when to fire the missile. The computer has got a program to do this.

Type LIST RETURN to see it using page mode, which we met in Chapter 4. (CTRL and N to set it up, SHIFT for continue to next page and CTRL and O to return to normal scroll mode before you RUN the program.) DRY run it to see how it works and RUN or LIST it a few times to see if you are right.

Press CTRL and N.
	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	280 FOR Clear=1 TO 24:PRINT:NEXT Clear
290 UNTIL FALSE

300 REM End of missile firing

310 CLS:FOR Down=1 TO 10:PRINT:NEXT Down

320 PRINT" GLUG"

330 PRINT" SHIP SUNK"

Now RUN it..

>LIST

1 REM Firing missiles

10 REPEAT

20 CLS

30 FOR DOWN=1 TO 5:PRINT:NEXT DOWN

40 PRINT" -"

50 PRINT" !:!"

60 PRINT" !:!"

70 PRINT" ------"

80 PRINT" ! !"

90 PRINT" ! !"

100 PRINT"-----------------"

110 PRINT"! /"

120 PRINT"! /"

130 PRINT"! /"

140 PRINT"!------------/"

150 INPUT"Do you wish to sink the ship(R

eply YES or NO)",Reply$:IF Reply$="YES"

 THEN 300

160 PRINT"For each of the following ente

r 'FIRE' if he decides to fire the miss

ile."

170 INPUT"Captain",Captain$

180 INPUT"1st Officer",Officer1$

	
	

Press SHIFT.
	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	140 PRINT"!------------/"

150 INPUT"Do you wish to sink the ship(R

eply YES or NO)",Reply$:IF Reply$="YES"

 THEN 300

160 PRINT"For each of the following ente

r 'FIRE' if he decides to fire the miss

ile."

170 INPUT"Captain",Captain$

180 INPUT"1st Officer",Officer1$

190 INPUT"2nd Officer",Officer2$

200 IF Captain$="FIRE" OR Officer1$="FIR

E" AND Officer2$="FIRE" THEN CLS ELSE PR

INT"Missile cannot be fired":FOR Wait=1

TO 5000:NEXT Wait:UNTIL FALSE

210 CLS:FOR Clear=1 TO 24:PRINT:NEXT Cle

ar

220 PRINT" *"

230 PRINT" ***"

240 PRINT" ***"

250 PRINT" ***"

260 FOR Wait=1 TO 3000:NEXT Wait

270 FOR Fire=1 TO 24:PRINT" !!!":NEXT F

ire

280 FOR Clear=1 TO 24:PRINT:NEXT Clear

290 UNTIL FALSE

300 REM End of missile firing

310 CLS:FOR Down=1 TO 10:PRINT:NEXT Down

320 PRINT" GLUG"

330 PRINT" SHIP SUNK"

Now RUN it.

>_

	
	

Press CTRL and O.

Type NEW RETURN to carry on when you're ready.

b1
Dry run ___

__

__

__

__

__

That is the end of another chapter.

Type BYE RETURN and NEW RETURN to test your own programs or type CHAIN"CH7" RETURN and press 'play' on your recorder to carry on with the next chapter.
7. Example Decisions

CONTENTS
-
Examples to test your understanding of the work covered so far

Find Chapter 7 by using *CAT and load it by typing CHAIN "CH7" RETURN.

Example decisions

These examples can be tried in any order.
1
Write a program to enter into the computer the name and shoe size of each of your friends or family.

If their shoe size is greater than 9, print out "(Name) has big feet."

If their shoe size is less than 4, print "(Name) has little feet."

If their shoe size is between 4 and 9 inclusive, print "(Name) has normal feet."

Enter each name in turn. Use a rogue value "END" as a name to end the program.

Hint: <= means less than or equal to, so Shoe <+ 9 means 'Shoe is less than or equal to 9'. Similarly, >= means greater than or equal to, and so Shoe>=4 means 'Shoe is greater than or equal to 4'.

Type EXAMPLE 1 RETURN for the computer's answer. RUN it and repeat as often as you like, by typing EXAMPLE 1 RETURN. You can try out the programs you have written at the end of this chapter.

2
Write a program to input any three numbers and then print them out in descending order (going down).

e.g. Input 7, 3, 4. Print 7, 4, 3.

Type EXAMPLE 2 RETURN for the computer's answer. RUN it and repeat as often as you like, by typing EXAMPLE 2 RETURN.
3
Write a program to input a name and date of birth. The computer will print out the correct star sign followed by a lucky number for that person. Here are the dates for the different star signs.

Dec
22
to
Jan
20
-
Capricorn

Jan
21
to
Feb
19
-
Aquarius

Feb
20
to
Mar
20
-
Pisces

Mar
21
to
Apl
20
-
Aries

Apl
21
to
May
21
-
Taurus

May
22
to
Jun
21
-
Gemini

Jun
22
to
Jly
23
-
Cancer

Jly
24
to
Aug
23
-
Leo

Aug
24
to
Sep
23
-
Virgo

Sep
24
to
Oct
23
-
Libra

Oct
24
to
Nov
22
-
Scorpio

Nov
23
to
Dec
21
-
Sagittarius

Hint: Enter birthday as D, M, Y (e.g. 13, 8, 64).

IF D is greater than 31 OR M is greater than 12 OR Y is greater than 85 OR D is less than 1 OR M is less than 1 OR Y is less than 1 then an error has been made.

IF M=12 AND D is greater than 21 OR M=1 AND D is less than 21 THEN star=Capricorn.

IF M=1 AND D is greater than 20 OR M=2 and D is less than 20 THEN star=Aquarius.

... and so on.

Note: In any IF instruction containing both AND's and OR's the computer will always do all the AND's first and then the OR's after. When brackets are used in IF instructions, the computer will always work out the brackets first. Brackets have been used in line 70 to show this but they are not really needed, as can be seen in lines 80, 90 and so on.

Type EXAMPLE 3 RETURN for the computer's answer. You will need Page Mode again here. CTRL and N to set it up, SHIFT to continue with the next page and CTRL and O to return to normal Scroll Mode for the program RUN. RUN it and repeat as often as you like by typing EXAMPLE 3 RETURN.

4
Write a program to send off a player in a game if he commits three or more fouls OR he hits another player OR he does not obey the referee.

Type EXAMPLE 4 RETURN for the computer's answer. RUN it and repeat by typing EXAMPLE 4 RETURN.

5
Examination grades. Write a program to enter a set of names, with an examination mark out of 100 for each. Print out the examination grade for each name, where grade A is greater than 80 marks, grade B greater than 65, grade C greater than 44 and less than 45 fails. Finally, after all the names have been entered, print out the total number of grade A's, B's, C's and fails, followed by the candidate with the highest mark and the candidate with the lowest mark.

Type EXAMPLE 5 RETURN for the computer's answer. You will need Page Mode again here. CTRL and N to set it up, SHIFT to move to next page and CTRL and O to return to normal Scroll Mode for the program RUN. RUN it and repeat by typing EXAMPLE 5 RETURN.

6
Write a program to input a birthday as D, M, Y (e.g. 23, 2, 68), and print it out in normal English (e.g. 23rd of June 1968).

Type EXAMPLE 6 RETURN for the computer's answer. You will need Page Mode again here for the listing. RUN it and repeat by typing EXAMPLE 6 RETURN.

Well, that's the end of another chapter. To write and test your own work, type BYE RETURN followed by NEW RETURN. You then have the computer all to yourself again. To carry on with the next chapter, type CHAIN "CH8" RETURN and press 'play' on your recorder.
8. Problem to Program

SUMMARY
-
Planning and writing programs

CONTENTS
-
Stage 1
-
Concept

Stage 2
-
Systems analysis

Stage 3
-
Coding

Stage 4
-
Testing

Stage 5
-
Maintenance

An example program: from problem to program

Find Chapter 8 by using *CAT and load it by typing CHAIN "CH8" RETURN. Throughout this chapter, you can skip forwards with ESCAPE or backwards with SHIFT and ESCAPE.

In this chapter we are going to show you how to produce a working program from a vague idea.

By now you should be growing more confident with your computer and are probably planning to write some amazing new program like Space Invaders. Writing complicated programs is difficult and time-consuming. It is also impossible unless well planned and organised. In this chapter we will try to organise your approach to programming. Every program, whether written to compare shoe sizes or send men to the moon, goes through a series of stages. There are five stages.

1
Concept

2
Systems Analysis

3
Coding

4
Testing

5
Maintenance

The only difference between simple and complicated programs is the time needed for each stage. A common mistake made by many people is in thinking Stage 3 is all that is necessary for the production of a program. Certainly with many simple programs (such as adding two numbers together) Stages 1, 2, 4 and 5 may well be a simple mental exercise. But they are done, even if the programmer is not conscious of it.

Stage 1 - The Concept

Programs are produced in response to problems. The problem may be a new idea or may occur as a change to an existing situation. For example, new ideas could come from a:

teacher who wants the average of a set of class marks;

footballer who wants to produce league tables for a group of local teams;

hobbyist wishing to devise his own computer games;

treasurer who wishes to computerise his club's accounts;

linguist who wants to translate a foreign language;

musician who wants to compose music by computer;

designer who wants to design on the computer; and so on.

Changes to existing situations can occur when someone wants to extend a program that already exists. To take a simple case, a program to calculate the area of a triangle using the rule 'half base times height' could develop as follows:

calculate area using the three sides instead;

test to see if the sides given actually form a valid triangle;

test to see what sort of triangle it is (equilateral, isosceles, etc.);

plot the triangle on the screen; and so on.

Stage 2 - Systems Analysis

Before any program is written, the purpose of that program should be clearly thought through. In computer this stage is often the most difficult one and if more time was spent here, there would be less problems with the program later on. There are three steps involved.

1
Initial investigation

This concentrates on how to change the initial idea into a programmable form. What results are really required?

2
Input/output/process

Given that now you know what you are trying to achieve from step 1 -

What information have you got?
(Input)

What results do we want?
(Output - step 1)

What must we do to input to get output?
(Process)

This can be extended by considering what variables are needed and listing them in English. This leads to step 3.

3
Algorithm

Before the coding stage, the ideas from steps 1 and 2 should be clearly set out. One technique for doing this is called a flowchart, which is a pictorial representation of all the points needed to make up the whole process. A flowchart is often useful but not always essential. What is essential is that all the logical parts of the process are thought out and itemised. This is your algorithm - setting out how you are going to do what you want to do.

Stage 3 - Coding

This is the writing of the computer program. It involves changing the algorithm into a form that the computer can understand. This is often best done in a modular form, where each module can be written and tested separately and the final program achieved by linking them all together. This also has the advantage of making the completed whole more readable by some other programmer wishing to extend or even correct your program at a later date. Take for example a payroll program. The income tax calculation is best written as a self-contained module so that when the Chancellor of the Exchequer changes the calculation, which he is liable to do at any budget time, it is relatively easy to bring the program up-to-date.

Stage 4 - Testing

Testing a program can be viewed as three steps.

1
Compilation

These are tests carried out on the program by the computer to test the syntax of the language used. Instruction construction is checked to ensure they obey BASIC rules. For example:

30 IF Name : FRED PRINT is the greatest

would totally confuse the computer and cause the error message 'No such variable at line 30' to appear on the screen when the program is RUN. The correct form of this instruction is

30 IF Name$="FRED" THEN PRINT"is the greatest"

2
Logic

This should be tested by the programmer with a dry run through the complete program. The purpose is to ensure that the program actually does what the programmer wants it to do.

3
Test data

This should test all possible routes through the program. It is often difficult to predict every possible route as we have seen. These tests should include invalid information to ensure that the program cannot be made to go wrong.

Stage 5 - Maintenance
This stage provides for the updating, improving and amending of the program. Having completed the writing of the program the testing stage may well indicate where improvements may be made. If the program accepted invalid information, then perhaps a test routine, checking for errors, should be included. If error routines are not written then this section should contain some indication of the limitations of the program.

This stage is also necessary to allow other people, possibly not programmers, to use the program with the minimum of trouble. It should include all the following.

1
An interpretation of the results if this is not obvious.

2
A glossary, a list of variables or parameter listing.

3
A program listing.

4
Clear, detailed instructions for running the program bearing in mind that the program 'user' may not be familiar with the program or perhaps even the computer itself.

An example program

To illustrate these various stages, they have been applied to writing a program on examination grades.

Stage 1 Concept

To produce a program that will look at examination or test marks and award appropriate grades.

Stage 2 Systems Analysis

1
Initial investigation:

Look at each mark in turn;

Compare each mark with that needed for each grade;

If mark is above that needed for a grade then award that grade (a candidate is given the highest grade possible).

2
Input/output/process:

What results are needed? (output)

Pupils' names and their grades.

What information do we need to achieve this? (input).

Pupils' names and the mark they scored in the examination.

How do we change these marks to grades? (process)

Grade A if a pupil scores greater than 80 marks, grade B greater than 65, grade C greater than 44 and less than 45 fails.

What variables are needed?

Name
-
use string variable Name$

Mark
-
use numeric variable Mark

Grade
-
use string variable Grade$

3
Algorithm:

Input a name and mark.

If mark is greater than 80, then grade = A

If mark is less than 81, but greater than 65, then grade = B

If mark is less than 66, but greater than 44, then grade = C

If mark is less than 45 then grade = F (fail)

Print name and grade.

Stage 3 Coding:
Use 3 modules
1
Input

2
Process

3
Output

To see the coding type CODING1 RETURN on your computer.

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	>CODING1

CODING1

1 REM Examination Grades

9 REM Input information

10 INPUT"Enter candidate's name and mark

 separated by a comma.",Name$,Ma

rk

19 REM Find correct grade

20 IF Mark>80 THEN Grade$="A"

30 IF Mark<=80 AND Mark>65 THEN Grade$="

B"

40 IF Mark<=65 AND Mark>44 THEN Grade$="

C"

50 IF Mark<45 THEN Grade$="F"

59 REM Grade printout

60 PRINT Name$;" has grade ";Grade$

a.

Now see what your book says about

STAGE 4 - Testing.

>_

	
	

Stage 4 Testing

(i)
Compilation - tested during a computer run.

(ii)
Logic - dry run all possible routes through the program:

1
Mark greater than 100 (e.g. 105). Dry run _________________________

__

2
Mark = 100. Dry run ___

__

3
Mark between 81 and 99 (e.g. 89). Dry run _______________________

__

4
Mark = 80. Dry run __

__

5
Mark between 66 and 79 (e.g. 72). Dry run _______________________

__

6
Mark = 65. Dry run __

__

7
Mark between 44 and 64 (e.g. 64). Dry run _______________________

__

8
Mark = 45. Dry run __

__

9
Mark between 0 and 44 (e.g. 41). Dry run ________________________

__

10
Mark = 0. Dry run __

__

11
Mark less than 0 (e.g. -5). Dry run ________________________________

__

(iii)
Test data - RUN the program to test each of the above dry runs using any names you like.

Stage 5 Maintenance

The program works, but the following limitations are apparent:

1
It's a bit tedious having to type RUN for each test. This can be improved by using a REPEAT UNTIL loop and a Rogue value of END, as a name to stop the loop.

2
Marks greater than 100 or less than 0 should not be allowed.

These two points can easily be corrected. Type NEW RETURN and then CODING 2 RETURN to see the modified program.

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	>CODING2

1 REM Examination Grades

5 REM set up input loop

9 REM Input information

10 INPUT"Enter candidate's name and mark

 separated by a comma.(Enter END

 0 to finish) ",Name$,Mark

12 REM END input test

13 IF Name$="END" THEN 80

15 REM Check for silly errors

16 IF Mark>100 OR Mark<0 THEN PRINT "Err

or. Incorrect mark. Re-enter":UNTIL FALS

E

19 REM Find correct grade

20 IF Mark>80 THEN Grade$="A"

30 IF Mark<=80 AND Mark>65 THEN Grade$="

B"

40 IF Mark<=65 AND Mark>44 THEN Grade$="

C"

50 IF Mark<45 THEN Grade$="F"

59 REM Grade printout

60 PRINT Name$;" has grade ";Grade$

70 UNTIL FALSE

80 REM End of Examination Marks

90 PRINT "Program finished"

RUN this program to test the

modifications. There should be at

least 5 tests with Mark>100,Mark=100

Mark=0,Mark<0 and finally Name="END"

to finish

>_

	
	

Notice the program is too long to fit on the screen so you will need page mode here. Remember CTRL and N to set it up, SHIFT to move to the next page and CTRL and O to return to normal scroll mode for the program to RUN. LIST and RUN this program as often as you like. Type NEW RETURN to carry on.
b
Extensions

The program can be extended. For example it can be made to keep track of the highest and lowest mark in the test and also count the total number of candidates obtaining each grade. This additional information could be printed out at the end of the program. The last program has been modified to include these features. It has also been renumbered since it was getting a bit cramped.

Type CODING3 RETURN on your computer to see the latest modifications and RUN it using all the information used by your earlier dry runs to prove that it works.

You will need page mode again here with CTRL and N to set it up, SHIFT to move to the next page and CTRL and O to return to normal scroll mode for the program RUN. You can see the program again by typing LIST RETURN. LIST and RUN the program as often as you like. Type NEW RETURN to carry on.
	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	>CODING3

CODING3

10 REM Examination grades

20 REM Set up totals for grades A,B,C

 and Fails(F)

30 A=0:B=0:C=0:F=0

40 REM Set up largest and smallest marks

 so far

50 Largest=-1:Smallest=101

60 REM Set up input loop

70 REPEAT

80 REM Input information

90 INPUT"Enter candidate's name and mark
 separated by a comma.(Enter END

 0 to finish)",Name$,Mark

100 REM END input test

110 IF Name$="END" THEN 250

120 REM Check for silly errors

130 IF Mark>100 OR Mark<0 THEN PRINT "Er

ror. Incorrect mark. Re-enter":UNTIL FAL

SE

140 REM Find correct grade

150 IF Mark>80 THEN Grade$="A":A=A+1

160 IF Mark<=80 AND Mark>65 THEN Grade$=

"B":B=B+1

170 IF Mark<=65 AND Mark>44 THEN Grade$=

"C":C=C:1

180 IF Mark<45 THEN Grade$="F":F=F+1

190 REM Find Largest and Smallest

200 IF Mark<Smallest THEN Smallest=Mark:

Bottom$=Name$

	
	

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	 0 to finish)",Name$,Mark

100 REM END input test

110 IF Name$="END" THEN 250

120 REM Check for silly errors

130 IF Mark>100 OR Mark<0 THEN PRINT "Er

ror. Incorrect mark. Re-enter":UNTIL FAL

SE

140 REM Find correct grade

150 IF Mark>80 THEN Grade$="A":A=A+1

160 IF Mark<=80 AND Mark>65 THEN Grade$=

"B":B=B+1

170 IF Mark<=65 AND Mark>44 THEN Grade$=

"C":C=C:1

180 IF Mark<45 THEN Grade$="F":F=F+1

190 REM Find Largest and Smallest

200 IF Mark<Smallest THEN Smallest=Mark:

Bottom$=Name$

210 IF Mark>Largest THEN Largest=Mark:To

p$=Name$

220 REM Grade printout

230 PRINT Name$;" has grade ";Grade$

240 UNTIL FALSE

250 REM End of Examination Marks

260 PRINT "In the examination there were

 ":PRINTA;" Grade A's,":PRINTB;" Grade B

's,":PRINTC;" Grade C's and":PRINTF;" Fa

ils."

270 PRINT "Lowest was ";Bottom$;" with "

;Smallest

280 PRINT "Highest was ";Top$;" with ";L

argest

>_

	
	

c
More modifications

More modifications are possible. For example, how about including a calculation for the 'average' mark, worked out as the sum of all marks divided by the number of candidates.

Well, we are going to leave that one with you. You should know how to use the screen editor from your previous work so use it now to modify the last program to include the 'average mark' calculation.

The extra concept is the 'calculate average mark'.

You have now got to do the systems analysis, coding modification, testing and maintenance needed.

You are on your own. LIST, Modify and RUN the last program as often as you like.

That's another chapter finished. To write and test your own work, type NEW RETURN. You then have the computer all to yourself. To carry on with the next chapter type CHAIN"CH9" RETURN and press 'play' on your recorder.
9. Experimenting

SUMMARY
-
RND, GOTO

CONTENTS
-
a
RND
-
generating random numbers

b
RND
-
limit test

c
RND
-
summary

d
GOTO
-
a new instruction (beware)

Find Chapter 9 by using *CAT and load it by typing CHAIN "CH9" RETURN.

a1
RND

RND tells the computer to 'think of a number', or more technically to 'generate a random number'. The number in brackets after the RND tells the computer the highest number it can choose. In the program you have just RUN, RND(6) is telling the computer to think of a whole number between 1 and 6 inclusive. The complete instruction 50 PRINT;RND(6); is telling the computer to print out the number it thinks of between 1 and 6.

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	a1.

RUN this program

1 REM Dice

10 REPEAT

15 PRINT

20 I."Enter number of rolls (9999 to fin

ish)",End

30 IF End>1000 THEN 80

40 FOR Roll=1 TO End

50 P.;RND(6);

60 NEXT Roll

70 UNTIL FALSE

80 REM End of loop

90 P."Finished"

Note: P. is short for PRINT

 I. is short for INPUT

>_

	
	

There is no pattern to the numbers generated, you cannot work out what comes next. Your computer is acting like a dice. When you roll a dice you cannot work out what number it will give you next, but you know it will be between 1 and 6. If you do know what number is coming next then there is something wrong with the dice. A dice is said to be fair (doesn't cheat) if you cannot work out what will come next and it is not biased towards any particular number. For example, if you rolled a dice 20 times and got a six 18 times you would suspect the dice was biased towards a six. A fair dice has no preference for any of its numbers. Over a large number of rolls you would expect all the numbers 1 to 6 to come up roughly the same number of times. For example, with 120 rolls you would expect about 20 ones, 20 twos, 20 threes, 20 fours, 20 fives and 20 sixes.

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	RUN this program

1 REM Dice

10 REPEAT

15 PRINT

20 I."Enter number of rolls (999 to fin

ish)",End

30 IF End>1000 THEN 80

40 FOR Roll=1 TO End

50 P.;RND(6);

60 NEXT Roll

70 UNTIL FALSE

80 REM End of loop

90 P."Finished"

Note: P. is short for PRINT

 I. is short for INPUT

>RUN

Enter number of rolls (9999 to finish) ?

10

5166131661

Enter number of rolls (9999 to finish) ?

120

4121631143322464511463266461635521546634

6624552634455644116361111432522521255622

1344625433223526555325563145464135131166

Enter number of rolls (9999 to finish) ?

	
	

You can check if your computer is fair by using the last program to roll (not literally) 120 times and then counting how often each number (1 to 6) comes up. This is too much like hard work. So the computer has been given a new program to do this for you. Type NEW RETURN to see it.

a2
Dice test, dry run ___

__

__

You will need Page Mode for a3. Remember, CTRL and N to set it up, SHIFT to move to the next page and CTRL and O to return to Scroll Mode before you RUN the program.

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	>NEW

a3.

1 REM Dice guessing game

10 REPEAT:CLS:FOR DOWN=1 TO 8:P.:NEXT DO

WN

20 I."Enter your guess(9999 to finish)",

Guess

30 IF Guess=9999 THEN 170

40 IF Guess<1 OR Guess>6 THEN P."Numbers

 1 to 6 only please":FOR WAIT=1 TO 5000:

NEXT WAIT:UNTIL FALSE

50 Dice=RND(6)

60 P.'" ----- "'"| |"

70 IF Dice=1 THEN P."! !"'"! * !"'

"! !"

80 IF Dice=2 THEN P."! * !"'"! !"'

"! * !"

90 IF Dice=3 THEN P."! * !"'"! * !"'

"! * !"

100 IF Dice=4 THEN P."! * * !"'"! !"'

"! * * !"

110 IF Dice=5 THEN P."! * * !"'"! * !"'

"! * * !"

120 IF Dice=6 THEN P."! * * !"'"! * * !"'

"! * * !"

130 P."! !"'" ----- "

140 P.:IF Dice=Guess THEN P."Well done.

You're right" ELSE P."Hard luck. You wer

e wrong"

150 FOR WAIT=1 TO 5000:NEXT WAIT

160 UNTIL FALSE

170 REM End of Loop

	
	

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	20 I."Enter your guess(9999 to finish)",

Guess

30 IF Guess=9999 THEN 170

40 IF Guess<1 OR Guess>6 THEN P."Numbers

 1 to 6 only please":FOR WAIT=1 TO 5000:

NEXT WAIT:UNTIL FALSE

50 Dice=RND(6)

60 P.'" ----- "'"| |"

70 IF Dice=1 THEN P."! !"'"! * !"'

"! !"

80 IF Dice=2 THEN P."! * !"'"! !"'

"! * !"

90 IF Dice=3 THEN P."! * !"'"! * !"'

"! * !"

100 IF Dice=4 THEN P."! * * !"'"! !"'

"! * * !"

110 IF Dice=5 THEN P."! * * !"'"! * !"'

"! * * !"

120 IF Dice=6 THEN P."! * * !"'"! * * !"'

"! * * !"

130 P."! !"'" ----- "

140 P.:IF Dice=Guess THEN P."Well done.

You're right" ELSE P."Hard luck. You wer

e wrong"

150 FOR WAIT=1 TO 5000:NEXT WAIT

160 UNTIL FALSE

170 REM End of Loop

180 P."End of Game"
Dry RUN this program and then RUN it

to play the game.

>_

	
	

a3
Dice guessing game, dry run ____________________________________

__

__

a4
Number guessing game, dry run _________________________________

__

__

b
Upper limit test

Upper limit
Expected effect

RND (10)

RND (8.6)

RND (2.2143)

RND (1)

RND (0)

RND (-2.981)

RND (-4)

RND (-4.88)

RND (-10)

RUN or LIST this program as often as you like. Type NEW RETURN to carry on.

c
RND summary

You should have noticed the following for RND (Top).

1
If Top is greater than 1, the random number is between 1 and Top, e.g. RND(10) is between 1 and 10 inclusive.

2
If Top=1, the random number is a decimal fraction between 0 and 1, but never equal to 0 or 1.

3
If Top=0, the number is equal to the last random number given by RND(1).

4
If Top is a decimal fraction, e.g. 8.6 or -4.88 only the whole number part (or integer part) is used, e.g. 8.6 will use 8, -4.88 uses -4.

5
If Top is negative, then RND(Top) will always give the value of Top, e.g. RND(-4) will always be -4 and not a random number.

6
You haven't tried this but, if RND is used by itself without any brackets (e.g. 30 Number = RND) then the number will be -2147483648 and 2147483647.

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	>LIST

a5

1 REM Number guessing game(Modified)

10 CLS:FOR DOWN=1 TO 4:PRINT:NEXT DOWN

15 INPUT"Enter the computer's upper limi

t for the guessing game",Top

20 PRINT"I have thought of a number betw

een 1 and ";Top'"Try to guess it"

30 Number=RND(Top)

40 REPEAT

50 PRINT:INPUT"Your guess. (9999 for ans

wer)",Guess

60 IF Guess=9999 THEN PRINT"Number is ";

Mi,ner:GOTO 100

70 IF Guess<Number THEN PRINT"Too small.

 Try again":UNTIL FALSE

80 IF Guess>Number THEN PRINT"Too large.

 Try again":UNTIL FALSE

90 PRINT"Well Done. You have guessed cor

rectly"

100 REM Give up continue

110 PRINT:INPUT"Do you want to play agai

n? (YES or NO)",Reply$

120 IF Reply$="YES" THEN 1

130 PRINT'"Finished"

NOTE:a LIST will expand abbreviations

(P.>PRINT I.>INPUT etc.)

Press 'SPACE-BAR' to continue.

d
GOTO

Did you notice the new instruction, GOTO, in line 60, of the last program. It is a very powerful instruction, only to be used with great care. It tells the computer to go immediately to a specific line number. For example, GOTO 100 tells the computer to go to program line 100.

Over use of this instruction will make your program difficult to follow and modify. Use it carefully and always GOTO a REM instruction, otherwise there is a great danger than you might send the computer to a line number that does not exist or you might take out a line used by a GOTO when you modify your program. Notice that line 100 in the last program is a REM statement used by the GOTO in line 60.

That is the end of another chapter. To test your own programs, type BYE RETURN and NEW RETURN.
10. Print Controls

SUMMARY
-
Use of TAB function

CONTENTS
-
a
TAB - a new instruction

b
Explaining TAB

c
TAB explained

d
Extending TAB to two dimensions

Find Chapter 10 by using *CAT and load it by typing CHAIN "CH10" RETURN.

a1
TAB

This instruction is used as part of a PRINT or INPUT instruction, to control the layout of information on the screen. When characters are printed on the screen the extreme left hand side character is in position 0, the next character position 1, next position 2 and so on, up to position 39 (19 and 79 are also possible under certain conditions) on the extreme right hand side. In effect, there is room for 40 characters on the screen, numbered 0 to 39. In a PRINT or INPUT instruction, TAB(X) tells the computer to move to character position X to continue printing. This is very useful for setting out tables of information as in the next program, which prints out a league table for six teams. To see this program, press space bar.

a1
League Table. Dry run ___

__

__

RUN or LIST this program as often as you like. Type NEW RETURN to carry on.

a2
TAB TEST
	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	a2.

1 REM TAB TEST

10 REPEAT

20 P.:I."Enter Start and End values sepa

rated by a , (9999,0 to finish)",Start,E

nd

30 IF Start=9999 THEN 80

40 FOR Count=Start TO End

50 P.TAB(Count);"*";

60 NEXT Count

70 UNTIL FALSE

80 REM End of Test

90 P."Finished"

Your book has various Start and End

values for you to try. For each

pair of values DRY RUN the program in

your book and test them by RUNning the

program.

RUN or LIST it as often as you like.

Type NEW to move to the next section.

Press 'SPACE-BAR' to continue.

	
	

After typing RUN on your computer, enter the following 'start' and 'end' values

0, 10
Dry run
__

 __

0, 39
Dry run
__

 __

0, 79
Dry run
__

 __

0, 119
Dry run
__

 __

0, 159
Dry run
__

 __

0, 199
Dry run
__

 __

0, 959
Dry run
__

 __

14, 206
Dry run
__

 __

Anything else you like. Dry run

 __

9999, 0
Dry run
__

RUN or LIST this program as often as you like. Type NEW RETURN to carry on.

b
Explanation of TAB test

Test 0, 10

Prints ***********. 1st * in position 0,2nd in position 1, 3rd in position 2, and so on to the * in position 10, giving 11 *'s altogether.

Test 0, 39

There are 40 positions on the screen numbered 0 to 39. Here, we put a * in each position, giving a complete line.

Test 0, 79

The last position on the line is 39, so the computer makes the 1st position on the second line position 40. 0 to 79 is 80 positions, giving two complete lines, each of 40 *'s.

Test 0, 119

Position 79 is the last position on the second line, so the computer makes 80 the 1st position on the third line. 0 to 119 is 120 *'s, giving three complete lines, each of 40 *'s.

Test 0, 159

This gives four lines of *'s. This is easy to predict, since 0 to 159 is 160 positions. There are 40 positions per line, so 160 positions gives 160/40, equals four lines of *'s.

Test 0, 199

0 to 199 is 200 positions. 200/40 = 5 lines of *'s.

Test 0, 959

0 to 959 is 960 positions. 960/40 = 24 lines of *'s, which is a complete screen.

Test 4, 206

14 to 206 is 193 positions, starting at position 14 and going to position 6 on line 6.

If you thought that was too easy, we have made life more difficult for you by modifying the last program. Type LIST RETURN to see this modified program.

b1
Modified TAB program test

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	b.

Could you see what was happening?

Your book will explain.

>LIST

b1.

1 REM TAB TEST(Modified)

10 REPEAT

20 PRINT:INPUT"Enter Start and End value

s separated by a , (9999,0 to finish)",S

tart,End

30 IF Start=9999 THEN 80

40 FOR Count=Start TO End

50 PRINTTAB(Count);Count;

60 NEXT Count

70 UNTIL FALSE

80 REM End of Test

90 PRINT"Finished"

Notice line 50 has been changed to

print out the position number instead

of just an '*'.

Dry RUN this program with the Start

and End values as shown in your book.

RUN and LIST the program as often as

you like to check your results.

Type NEW to carry on.

Press 'SPACE-BAR' to continue.

	
	

0, 10
Dry run
__

 __

0, 30
Dry run
__

 __

30, 45
Dry run
__

 __

77, 84
Dry run
__

 __

117, 121Dry run
__

 __

0, 253
Dry run
__

 __

Anything else you like. Dry run

 __

9999, 0
Dry run
__

RUN or LIST this program as often as you like. Type NEW RETURN to carry on.

c
Explanation of modified TAB test program

Test 0,10

Prints 012345678910.

0 is printed in position nought, 1 in position one, 2 in position two, and so on, to 10 in position ten.

Test 0,30

Prints 12345678910 as above, but now notice that position 11 cannot start at position 11 on that line. Therefore, the computer goes to the next free position 11, on the next line, to print 11. similarly for 12, 13, 14 and so on up to 30.

Test 30 to 45

The 30 prints in position 30, as expected, but as above, the 0 of the 30 occupies position 31 on that line, so 31 prints in position 31 on the line below. Similarly for 32 to 38.

Tests greater than 38

After 38 has printed, the 8 occupies position 39, so the number 39 is forced onto the next line, but it now does double spacing because 38 filled the previous line. Similarly for 40 to 78.

After 78 (79 onwards) the computer goes to triple spacing. After 118 (119 onwards) it goes to quadruple spacing, and so on until it reaches six blank lines between numbers 252 and 253.

In conclusion, TAB(X) will start the printing of information at position X on the same line unless the last characters printed have already passed position X, in which case printing carries on at the next free position X on the next line or lines below.

d
Extending the TAB instruction

The TAB instruction can be extended to use two numbers after TAB, separated by a comma and in brackets, e.g. TAB(10,15). The first number (10 in the example) is the number of positions along the line as before. The second number (15 in the example) is the number of lines down from the top of the screen where printing is to take place. For this instruction, the top of the screen is line 0 and the bottom is line 31 (others are possible). Therefore, the instruction TAB(10,15) is saying, carry on printing at position 10 on line 15 (16 lines down). Your computer has a program to demonstrate this. Type NEW RETURN to see it.

d1
Extended TAB demonstration. Dry run ____________________________

__

__

__

RUN or LIST the program as often as you like. Type NEW RETURN to carry on.

	
	
	0123456789012345678901234567890123456789

	
	

	
	00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20
	d2.

1 REM Extended TAB Test

10 CLS

20 REP.

30 I.TAB(0,21)"Enter Name(End to finish)

"Name$

40 IF Name$="End" THEN 150

50 I.TAB(0,22)"Enter Position"TAB(26,22)

,Pos

60 I.TAB(0,23)"Enter Line"TAB(26,23),Lin

e

70 IF Pos>38 OR Pos<0 OR Line>20 OR Line

<0 THEN P."Error Re-Enter";:Limit=23:G.1

00

80 P.TAB(Pos,Line);Name$

90 Limit=24

100 REM Error resume(from line 70)

110 F. Clear=21 TO Limit

120 F. Space=0 TO 38:P.TAB(Space,Clear)"

 ";:N. Space

130 N. Clear

140 U. FA.

150 REM End of program loop (line 40)

160 P.'"Finished"

Press 'SPACE-BAR' to continue.

	
	

d2
Extended TAB test. Dry run ______________________________________

__

__

__

RUN or LIST the program as often as you like. Type NEW RETURN to carry on.
d3
Extended Stars. Dry run ___

__

__

__

RUN or LIST the program as often as you like. Type NEW RETURN to carry on.

That is another chapter finished. Type BYE RETURN and NEW RETURN to test your own programs. To carry on with the next chapter, type CHAIN"CH11" RETURN and press 'play' on your recorder.

Good luck in the next chapter.
11. Examples

SUMMARY
-
Abbreviating keywords

CONTENTS
-
Instruction abbreviations

Examples

Find Chapter 11 by using *CAT and load it by typing CHAIN "CH11" RETURN.

Instruction abbreviations

In Chapter 10, instructions were used in their abbreviated form. Notice that these are replaced by their full keyword when following a LIST.

Abbreviation
Keyword

I.
INPUT

P.
PRINT

F.
FOR

N.
NEXT

U.
UNTIL

FA.
FALSE

How many did you notice?

Examples on this section

The following examples can be tried in any order. You can try out your own programs at the end of the chapter.

1
Write a program to toss a coin. Use RND to choose a number between 1 and 2 inclusive. If 1 is chosen, print "Heads"; if 2 is chosen, print "Tails". Try to guess what the computer will choose. Type EXAMPLE 1 RETURN for the computer's answer. RUN it and repeat by typing EXAMPLE 1 RETURN.

2
Write a program to input the names of two football teams, generate two random numbers for their scores and print out the result of the match between them. Type EXAMPLE 2 RETURN for the computer's answer. RUN it and repeat by typing EXAMPLE 2 RETURN.

3
Use the extended PRINT instruction to draw a box of any size, anywhere on the screen. Type EXAMPLE 3 RETURN for the computer's answer. RUN it and then repeat it as often as you like, by typing EXAMPLE 3 RETURN.

Note: You will need Page Mode for EXAMPLE 3. Remember CTRL and N to set it up, SHIFT to move to the next page and CTRL and O to return to normal Scroll Mode before you RUN the program.
4
Write a program to draw two vertical walls on the screen, and bounce a ball horizontally between them. Type EXAMPLE 4 RETURN for the computer's answer. RUN it and repeat by typing EXAMPLE 4 RETURN.

5
Write a program to move a wandering star around the screen, starting from the centre.

Hint: Start at the centre of the screen TAB(20,12);"*"

Generate a random number RND(4). If the random number equals: 1, go up; 2, go right; 3, go down; 4, go left. Repeat in a timed loop.

Type EXAMPLE 5 RETURN for the computer's answer. RUN and repeat as before.

6
Repeat EXAMPLE 5 but let the star leave a trail behind it to show where it has been. Type EXAMPLE 6 RETURN for the computer's answer. RUN and repeat as required.

7
Write a program to draw a rectangular spiral on the screen. Start at the top left hand corner and move around the edge of the screen in ever decreasing rectangles until you reach the centre. Type EXAMPLE 7 RETURN for the computer's answer. RUN and repeat as required.

That's all for this chapter.

To write and test your own work, type BYE RETURN and NEW RETURN.

You then have the computer all to yourself. To carry on with the next chapter, type CHAIN"CH12" RETURN and press 'play' on your recorder.
12. Forward Looking

SUMMARY
-
A look at string handling, testing and control, colour and graphics, sound

CONTENTS
-
a.
Programming extensions

b.
Keyboard codes

c.
Computer control

d.
Goodbye

Find Chapter 12 by using *CAT and load it by typing CHAIN "CH12" RETURN. You can skip forwards with ESCAPE or backwards with SHIFT and ESCAPE.

a
Programming extensions

In this Electron Starter Pack, we have tried to introduce you to basic programming techniques. Your Electron computer is capable of much more. For example, we have not attempted to cover the following:

(i)
String handling

(ii)
Testing and control by computer

(iii)
Colour and graphics

(iv)
Sound

(v)
Data structures

(vi)
Subroutines and procedures

(vii)
Files

We hope this Starter pack has whetted your appetite to explore these areas and go on to even greater things.

We have divided this chapter into four sections.

(i)
String handling

(ii)
Testing and control

(iii)
Colour and graphics

(iv)
Sound

We are not going to attempt to teach you to program in these areas, but will try to give you some idea of what they are about. Press the space bar on your computer to continue.

b
Keyboard codes

It may appear that your computer keyboard and TV screen are directly connected. In fact they are not. Pressing a key on the keyboard merely sends information to your computer, it is the program that decides what to do with the information when it gets there. This means that you, the programmer can give any meaning to any key, not necessarily related to what is shown on the key.

To demonstrate this we have turned your computer into a Code Maker. You can press any character key on the keyboard and the computer will print some other character on the screen. You are the Code Breaker and have to try to work out how the keyboard character and screen character are related. When you think you have cracked the code, press ESCAPE to see if you are right. Good Luck. Press the space bar to continue.

c
Computer control

Your Electron computer can control things. If you carefully turn it upside down you will see two edge connectors, one with 10 strips and the other with 14 strips. These allow you to connect various things to your computer, although another box (with the correct interface) is required in most cases. For example:

(1)
Central heating. You could connect your central heating system to your computer. Your computer could then respond to temperature changes in different rooms, in different ways, at different times of the day or week, and adjust your central heating automatically for maximum efficiency. However, such a system would be difficult and expensive to set up.

(2)
Electric Train. Your Electron computer could control an electric train set, to start and stop any train, change points and signals, and warn of possible collisions. If you have a train set, such a system could be cheap and fairly easy to do.

(3)
Robots. Your Electron computer can control a robot. Many schools have built simple robots controlled by a computer that can follow any white line drawn on the floor. This can be done easily and cheaply. At the other extreme (difficult and expensive), the computer could make a cup of tea for you or vacuum clean the carpets.

(4)
Burglar Alarm. Your Electron computer could set off a burglar alarm, or telephone the local police station for you if it detected a break-in at your home.

(5)
Computer Links. It is also capable of being connected to other computers much more powerful than itself. Take 'Prestel' for example, British Telecom's computer information service. Your computer could send and receive information to and from this system, allowing you to shop from your armchair or share programming ideas with other people who have computers connected to the system.

Computer control is in its infancy but is growing fast, so that you no longer have to be an electronics whiz-kid to set up your computer to control things. Many electronic devices are on the market for connection to your computer now. Many are used in games (joysticks, paddles, etc.).

Your computer has a simple game for you to try.

Press space bar to continue.

__

d
Happy programming
4

