(c) copyright 1984 HOLLY computers limited
All rights reserved. No unauthorised lending hiring or copying or any part of this product and its documentation. Purchasers of this product are granted permission by Holly Computers Limited to incorporate it into computer program games which may be offered for sale provided the use of this product is acknowledged and ownership clearly stated.

The essential acknowledgement message with such a computer program must be:-

"This program uses and contains GAMEMAKER2 which is wholly the property of Holly Computers Limited and all rights are reserved."

HOLLY Computers Limited

PO Box 17

Bingley

West Yorkshire

BD16 3JQ

	GAMEMAKER2
	USER GUIDE


Contents

Section
Page

1
INTRODUCTION


Gamemaker2
1


How Does It Work?
2


Background Information
3


Inside Gamemaker2
5


What Do You Do?
7

2
INSTRUCTIONS


How to Use USER2
9


How to Use MAKER2
17


Speed And Timing
22


Hints And Wrinkles
24


A Professional Finish
26

3
APPENDICES


A.
Commands
28


B.
Variables
41


C.
Collisions
42


D.
ASCII Key Values
43

GAMEMAKER2


is a programming aid to help you write high quality MODE 2 games programs in BASIC.

You can:-


*
design multi-coloured images of various sizes, using all sixteen colours


*
set the images together in pairs to alternately appear on the screen. If the images are slightly different, the alternate display of one image and then the other gives animation; i.e. walking man etc.



This multi-coloured two image shape is called a SPRITE.


*
print your Sprites on the screen and move them around with simple commands.


*
change the speed at which Sprites move.


*
change how often the two images are alternated


*
check for collisions between Sprites.


* 
change the images assigned to a Sprite as your program runs.


*
control one main Sprite from the keyboard using keys of your choice.

HOW DOES IT WORK?
There are two parts to GAMEMAKER2:

MAKER2


This is the designer program which lets your create and modify your images. You may view them alternating on the screen, and you can save your image file on tape for use in your game. To help you remember each image, you can give each one a five character name. Files may be re-loaded in order that the images may be modified or added to.

USER2


This is the hidden utility program that is part of every image file. When the file is loaded into your game program USER2 becomes active. Its main functions are to keep a record of each Sprite and where it is on the screen and to intercept and obey the special commands from your BASIC program that control the Sprites.

BACKGROUND INFORMATION
It may be helpful to you before using GAMEMAKER2 to consider what happens when we PRINT in MODE 2 on the Electron.

As with all systems, the smallest unit on the screen that we can display is a picture element (pixel). In MODE 2, there are 160 pixels across the screen on each line and 256 pixels down the screen.

	0

255
	
	159
	MODE 2 Screen Layout


A normal character is formed by a block of 64 pixels, 8 across and 8 down. So, we have 20 characters across each line (160/8) and 32 lines down the screen (256/8).

Each character is set up inside the Electron's operating system with some of its pixels switched on to the current foreground colour (ink) and the remainder switched to the current background colour (paper). As well as the standard set of characters, we can create out own 8 x 8 characters using the excellent VDU 23 command.

The power and flexibility of GAMEMAKER2 is that you can design any size of character from

2 pixels across and 1 pixel down

to

16 pixels across and 24 pixels down

Each pixel in such an image can be switched to any of the sixteen colours available in MODE 2.

The special commands that we use to control them on the screen replace (and much more) the normal PRINT TAB commands we would use for standard characters.

In order to position an image on the screen we give it an X position in the range 0 - 159, and a Y position in the range 0 -255. Each single movement in any direction is always a 2 pixel step so movement can be reasonably smooth. The image is drawn on the screen during the short delay that occurs at the end of each full screen. This means that the flicker effect of changing or redrawing images is eliminated for small and medium sized images (up to approximately 8 x 7).

INSIDE GAMEMAKER2
Whilst the designer program MAKER2 is a powerful, easy-to-use, and we hope and enjoyable program, the main part of GAMEMAKER2 is the hidden USER2.

Although not essential to full use of its facilities, we feel it may be of interest to you to look at the internals of this part of the system.

There are four elements to USER2:

1.
A set of machine code programs that control images and sprites and that communicate with your game program via the special commands and some of the resident integer variables.

2.
An image control area with 48 control records that are set-up by the MAKER2. Each record tells USER2 how many pixels across and down there are for this image and where the image is stored in USER2's memory (the image file).

3.
A sprite control area with 32 control records. This is where USER2 keeps a record of which images you have assigned to a sprite, what movement rate and alternate (flash) rate you want and the x and y position. It also keeps a record of whether the sprite is drawn on screen and if so which of its two images, and if you want collision detection.

4.
An image memory area with space for 48 standard sized images (8 x 8). If you design very large images, you cannot use all 48 possible images as USER2 will run out of available memory. There is room for 48 standard sized images or smaller, but only enough for 8 maximum sized images of 16 x 24 pixels.


You do not need to keep track of where you are as you design different sized images, the designer program will tell you if your attempt to create more images that the memory space allows.

As well as using some of the resident integer variables A% - Z%, USER2 controls the BREAK key and the function key 1 f1. The BREAK key ensures that USER2 is always active with PAGE set to &1B00, USER2 is hidden below this PAGE setting. The f1 key provides you with a very useful list of images and names to help you when writing your game program.

There is still available to you the normal facility of programming the other function keys, but remember never to give an *FX18 command or you will disable USER2.

A hard BREAK (Control and BREAK) is the correct way to switch off USER2.

WHAT DO YOU DO?

First, you should read this booklet, at least the introductory sections.

Then, load and run the first demonstration program which is called TUTOR and is on side 1 of your cassette. It is well down the tape after GAMEMAKER2 and MAKER2 at approximately 100 if you have a tape counter.

You should type:

CHAIN "TUTOR"

and sit back and wait for it to load and run.

This program is not a game but a series of sprite control routines giving examples of different techniques and combinations of commands. We have included REM statements to guide you through, you will find it useful to refer to Appendix A, the commands, and Appendix B, the variables.

When you feel you understand how to use GAMEMAKER2 and remember, "hands on" is a good way to learn as long as you make use of this booklet, then plan your game images, at least in outline.

Rewind the cassette to the start of side 1 and load and run GAMEMAKER2 with the command

*RUN

This is the only correct way to start the program although you can put the full name after the *RUN statement or use the Electron's shorthand for *RUN which is */

The GAMEMAKER2 title page and loader program is first (4 blocks) and this loads and starts the designer program MAKER2 (26 blocks).

Use this to design your images and to save them on tape, you will find it an easy program to use but please refer to the relevant section in this booklet. It will speed things up.

When you are ready to leave MAKER2 and start writing your BASIC game program then select GAME-USER2 on the main menu. This removes MAKER2 from memory with a Soft BREAK, and activates USER2 which is hidden along with your images below PAGE which is set to &1B00.

You can now write your game program as normal and the special commands and the f1 key are all active. When you have finished either fully or for this session then SAVE your game program as normal, preferably behind the image file you saved earlier.

When next you want to look at, develop or run the game, then *RUN the image file. This command will load USER2 for those images. Then press BREAK to activate USER2 and you can LOAD or CHAIN your game program as normal. You will find that PAGE and the f1 key have been set.

After your game is fully complete and tested you can have a more professional loading routine as recommended in section 2.

HOW TO USER USER2
There are eleven special commands available to you in USER2, which fit easily in your BASIC program and enable full control and manipulation of your sprites.

General Command Format
The commands have been designed to be as simple to use as possible and they all have a standard format:-

*GMt s

The first three letters '*GM' tell the Electron's BASIC interpreter that this is a GAMEMAKER2 command and control is passed to USER2.

The 't' represents the type of command and is a single letter such as; s = set, k = key, d = down, r = right, etc.

The 's' is the sprite number you want to action, and therefore it has to be in the range 1 - 32.

USER2 will accept either Upper case or Lower case letters for the commands, e.g. *GMD, *gms, *gMu, *Gmi. However, we have chosen to adopt the style shown above, *GMt, throughout this booklet. It is essential that there are no spaces between the letters in the command or a 'Bad Command' error message will result.

You may, if you wish, leave a space before the sprite number as above. This is not essential but it aids readability.

Example Commands
*GMs 1
-
set the sprite control record of sprite number 1 to the values in the Update Variables.

*GMp 13
-
paint sprite number 13 on the screen.

*GMr 6
-
move sprite number 6 right.

Each command must finish with a carriage return, which means it should either be on a line of its own if your program or be the last command on a line.

We have mentioned the Update Variables and these are explained fully later but it is relevant to mention here that we can tell USER2 to alter a sprite control record at any time. This is done by placing a comma ',', after the sprite number in the command, so instead of *GMr 6 above we enter

*GMr 6,
-
update the control record and then move sprite number 6 right.

If we enter an invalid sprite number or one that has no images assigned then USER2 takes no action but returns to the BASIC program.

Before considering the use of parameters it will be useful to see the steps that are taken inside USER2 whenever it receives a command.

General Command Action

Each command has its own set of actions within USER2 but the general routine that is followed for all commands is as follows:-

Step

Action

1
Check valid command

2
Check valid sprite number

3
If on screen then undraw

4
If comma present then alter control record

5
If move command change X or Y

6
If alternate time then set current image

7
If collision test required then check

8
draw current image at X and Y

9
set Reply Variables

Commands Summary

*GMs
set the control record

*GMp
paint the sprite on screen

*GMf
fix a copy of this sprite on screen

*GMr
move the sprite right

*GMl
move the sprite left

*GMu
move the sprite up

*GMd
move the sprite down

*GMw
wipe the sprite off screen

*GMv
set the Reply Variables to the control record values

*GMc
clear all USER2 Reply and Update Variables

*GMk
test the keyboard to the values set in the Direction Variables and if valid do a move command *GMr etc, as appropriate.

Parameters
The earlier descriptions of the sprite control records have discussed the parameters that USER2 needs to look after our sprites.

There are seven parameters and each one has a related resident integer variable. After every command these variables which we call the Update Variables are set to the current value of the parameter in the sprite control record. When you want to set up the sprites at the start of your program either with *GMs commands or during your program either with *GMs commands or by using a comma after the sprite number in the next command, then you should set these Update Variables before the command.

1
Image Number
I%

2
Alternate Image Number
A%

3
X position
X%

4
Y position
Y%

5
Movement Rate
M%

6
Flash Rate
F%

7
Collision detection flag
C%

Example:

20
I%=1:A%=2:X%=50:Y%=0:M%=0:


F%=0:C%=0

30
*GMs 1

These two instructions set sprite number 1 with images 1 and 2, its X and Y position at 50,0 and leaves the other three parameters unchanged.

Let's look at the Update Variables in detail. Remember, you only need to set them once at the start of your program unless you want to alter them during the game.

I%
Image Number; this has to be a valid number in the range 1 - 48, but cannot be larger than the highest image number you designed in this image file. No update if zero.

A%
Alternate Image Number; as above. Please note that where you do not require animation the alternate image number is usually set to the same as the image number.

X%
This is the pixel position across the line and should be in the range 0 - 159. Always updated even if zero, and if you give a greater value than the maximum of 159 then X% - 160 is inserted.

Y%
This is the pixel position down the screen and should be in the range 0 - 255. Always updated even if zero, and Y% - 256 inserted if a value greater than the maximum of 255 is in Y%.

Please note that the X and Y position is always the address of the top left hand corner of the image when it is drawn on the screen.

When an image is moved off the screen, either at the sides or the top/bottom then it reappears on the same line/column at the opposite edge.

M%
Movement Rate; this is the parameter that lets you change the speed at which a sprite moves. It works in conjunction with the four movement commands *GMr, *GMl, *GMu, *GMd. They normally move the sprite two pixels at a time but if the MR (movement rate) is set to 2 then the move is twice that at 4 pixels. A setting of 3 is 6 pixels and so on up to a setting of 15 which moves the sprite 30 pixels. The default setting is always 1, i.e. 2 pixels.

F%
Flash Rate; this parameter allows you to change how often the images are alternated. It is normally set to 1 and the images change every time the sprite is drawn. You can set it in the range 1 - 7 and 2 means every other time the sprite is drawn, 3 means every third time and so on up every seventh time.

C%
Collision Detection Flag; normally collision detection is switched off as it is expensive in terms of time. A setting of 1 switches it on and a setting of 2 switches it off. This is a time-consuming test as the X, Y values are checked against all the other active sprites.

Although you may only wish to set these variables once for each sprite at the start of your game, you may wish to know the current status of a sprites parameters during the game. Every command sets these variables to the values in the sprite control record just before returning to your game.

Reply Variables
As well as the sprite parameters set into the Update Variables at the end of each command, there are five other variables which USER2 sets for your possible use.

S%
Sprite Number; this is the sprite number that the last command actioned.

T%
Command Type; this is the type of command that was actioned. It is a Lower Case ASCII value for the command type letter, i.e. d = 100; r = 114.

H%
Hit Type; this is a code to describe the type of collision if one has occurred.



0
=
no collision



1
=
left side contact



2
=
right side contact



3
=
top contact



4
=
bottom contact



5
=
X, Y exact match



6
=
X's equal



7
=
Y's equal



8
= 
overlap

Z%
Contact Sprite Number; if there is a collision this variable is set to the sprite number of the one that has been hit.

K%
Key Pressed; this is only set after a *GMk command and it contains either the Upper Case ASCII value of the key pressed or a value of 255 (&FF) if no key was pressed.

Direction Variables
If you use the powerful *GMk command then there are four other variables that you will need to set at the start of your program. These tell the *GMk routine which keys should be tested for to initiate one of the four movement commands.

R%
Right Key; this should be set to the Upper Case ASCII value of the key for movement to the right

L%
Left Key; as above but for left movement

U%
Up Key

D%
Down Key

General

Your game program must never use the Update Variables except to communicate with USER2. Also the Reply Variables S% and T%. The other variables may be used as normal by your program as long as you are not using the relevant facilities in USER2.

The use of Resident Integer Variables is described on page 47 of your Acorn Electron User Guide.

HOW TO USE MAKER2
The designer program lets you design your images for a game, it also creates the image file that includes USER2 with all its facilities.

To load, set the cassette at the beginning of side 1 and type:

*RUN

First the title page and loader will be loaded. This is 4 blocks long and it performs some hidden initialisation and then loads the designer which is 26 blocks long.

The designer is very simple to use, each function has a simple menu system. You select on the menu using the SPACE bar and then enter your selection by pressing the RETURN key.

Inside the program you will find some brief prompts as to what you should do which are displayed as you enter a selected function. When you understand the way the program works you can switch off the prompts using the appropriate function on the main menu (PROMPTS).

If you select a function you do not want and enter you can always exit immediately by pressing the RETURN key.

Remember, the main purpose of this program is to let you create images, setting their size in pixels across (columns) and pixels down (rows). Then you are going to set each pixel in the image to the colour you want.

MAIN MENU
functions
IMAGE MAKER


SPRITE VIEW


INPUT TAPE FILE


OUTPUT TAPE FILE


GAME-USER2


PROMPTS

Image Maker

This function allows you to create or amend your images. It has two sub-menus. The first is to let you select the image you want to work on. It tells you the next free image number if you want to create a new image.

As an aide memoire you can scan all the other created images or any sprites that you have set up to view.

When you have selected an image number then the second sub-menu appears. This is IMAGE MAKER's action menu and there are five possible actions.

actions
RETURN


CREATE/AMEND


NAME


VIEW/SET/ALTER


MAIN MENU

The first lets you return to the previous sub-menu to select another image number. The last lets you return to the main menu.

The CREATE/AMEND action lets you set or alter the size of an image in terms of pixels across and down (columns and rows). This is essential and no other actions are possible until you have created the image.
Please note that because of the way that the image memory area is organised amending the size of an existing image destroys all other higher numbered images. So, if you have ten images set up and you change the size of image number six, then images 7, 8, 9 and 10 will all vanish. A scan of the images before and after this change will reveal this.

The NAME action lets you give each image a five character reference name. This is a very useful feature which you will find becomes essential as you begin to build up comprehensive image files for different games, and also during programming your game the f1 key gives you a list of the names of the current image file.

The VIEW/SET/ALTER action lets you set each pixel in the image to the colour you want. It shows you a magnified view of your image as well as a real size version and there is a palette of the colours so that you know which one is currently selected. As with the menus your main controls are the SPACE bar and the RETURN key.

You move the flashing cursor around the magnified image with the SPACE bar. If a colour is selected then the pixel under the cursor is set to that colour as you press the SPACE bar.

You can select the direction you move around the image with the four arrow keys. The 'P' key sets a PASS option which lets you move around without setting a colour.

One other option is the 'Z' key or ZAP option, this lets you fill the whole image with a single colour. You select your colour and press the 'Z' key.

Colour select is via the keys 0-9 and A-F, the palette has a marker which shows which colour is selected.

The RETURN key exits from this action routine.

Sprite View
This main menu function lets you assign two images to a sprite and then view the images side by side and also alternating on the screen.

Like the IMAGE MAKER it has two sub-menus, which for economy are the same as IMAGE MAKER. The first lets you select the sprite number you are going to use.

The second lets you CREATE/AMEND the sprite you have selected. To do this, you assign the two image numbers that you want to view. These must be images in the current image file of they will not be accepted.

Then you can VIEW the two images, the SPACE bar alternates them on the screen.

Output Tape File

This main menu function lets you SAVE on tape the images you have created. You can give the file a name of your choice, up to ten characters in length. This file is a complete version of USER2 ready to be *RUN prior to any game program development.
Input Tape File
This main menu function is simply the reverse of the above. You can LOAD into MAKER2 an existing file of images in order to amend or add to them.

Game-User2

Although you should always SAVE your images at the end of a designing session you do not need to re-load the newly created image file with a *RUN to start programming. This function shortcuts that process. It performs a soft BREAK key action which wipes MAKER2 out of memory, USER2 is activated and the BREAK and f1 keys are set. You can start writing your game program.

Prompts
With this function you can switch the brief prompts that are included in the program either ON or OFF.

SPEED AND TIMING
We have attempted to balance the power of the facilities available in GAMEMAKER2 with the inevitable cost in processing time. Where it has been necessary to choose between speed and ease of use, we have always chosen the latter. However, this is relative to what can normally be achieved in BASIC and except for simple steps comprising single character actions, BASIC is invariably slower than GAMEMAKER2's complex actions. Undrawing, repositioning, collision testing and redrawing are many times faster because they would involve numerous BASIC program steps.

It is possible to achieve the speeds and complexity of the professional quality MAZE type of games, where ghosts chase pill-swallowing heroes, or the COMBAT type game where enemies bomb your base.

However, you cannot write fast games simply by using GAMEMAKER2, the two critical elements for this result are:

1 
Design
-
minimise the number of mobiles at any one time. Speeds are reduced if two many are interacting.

2
Writing
-
ensure that your program is as efficient as you can make it. The important main loops must be as short as possible. The trick here is to put the dramatic complicated parts into exception routines that are only entered occasionally. Always use structured programming with PROCEDURES.

Timing interacting moving shapes is often a program. Here is one way to solve this so that the movement of one sprite does not affect the speed at which another one moves.

A timer is started for each mobile when the program starts and that mobile only moves when its timer says it should. It you have six mobiles and each has a PROC to control its moves, then in the loop that calls each PROC the timer is tested and only if the timer has expired is the PROC called. After the movement the timer is reset.

The demonstration program TUTOR shows this in action. There is a delay loop on the ladder climber and if no key is pressed for this delay, he slides down the ladder. You can speed up or slow down a mobile using M%, the Movement Rate to change the size of the 'steps' across the screen.

The size of the timer delay depends on the design of the game and the number of mobiles so you will have to experiment.

We have included the Movement Rate as a facility in GAMEMAKER2 specifically to help you overcome this problem.

Remember, small sprites move faster than larger ones and are not prone to flicker.

Also, collision testing is expensive in time, so use it carefully.

HINTS AND WRINKLES
This is just a mixture of points to note in the use of GAMEMAKER2 and general points of guidance.

1.
Read all you can in the various literature available - specialist books, magazine articles.

2.
Study existing games - look for the design features behind the action. You must not copy existing games.

3
Minimise your number of moving characters.

4
Make your incidents dramatic and colourful - good use of sound is vital.

5
Make your game progressively harder - not by making your programming job more difficult, but by changing the speed or some other simple factor.

In GAMEMAKER2

6
During development be sure to use a comma with your initial *GMs commands or you will have unwanted images on the screen.

7
Make sure when altering parameters during the game that the Update Variables all contain the values you want and not the leftovers from an earlier sprite command. See *GMv and *GMc.

8
Don't forget each command must finish with a carriage return.

9
When you duplicate a sprite with the *GMf command you cannot test for collision on this duplicate in USER2. If the duplicate is part of a ladder or base, then if you use another sprite number with the same image numbers at the collision points, exit and entry, then you can check for collision.

10
Why not start by taking one of your earlier simple games and adding sparkle with sprites?

A PROFESSIONAL FINISH
When you have finished and fully tested your game, you can change the loading sequence to add a more professional finish.

During the period of development you will have been activating USER2 in your image file with

*RUN

and then BREAK, and then loading your game program. One way of smoothing this process is to write a small BAISC program that is both a title page for your game and a loaded for the other two elements. It is normal for such programs to do other jobs such as define any VDU 23 characters that you are going to use in your game.

The procedure is to write this small program with a nice static screen layout normally including a text window to display the tape loading that follows. After that, the program should complete any initialisation tasks such as VDU 23's then the final two BASIC statements must be:

PAGE=&1B00

CHAIN"GAME"

This will 'load and run' your game program, 'GAME' above should be the name of your game program. However, USER2 is not loaded yet so you should alter the first line of your game program to *RUN and have the image file next on the tape.

This gives a final touch to your work and just to double check, the steps are summarised on the next page.

Tape contents:-

1
Title program/loader


2
Your game program


3
The image file (USER2)

Program steps:-


1
At the end of the loader



PAGE=&1B00



CHAIN "GAME"



where GAME is the name of your game program


2
At the start of your game program *RUN

Notes

The *RUN statement should be at the very beginning of your game program to ensure that there are no interface problems and also to share the title page, see TUTOR.

You can save an image file without the use of MAKER2 as long as you type

*SAVE "name" D00 1B00 DC3

COMMANDS
Appendix A
The general format of each command is:-

*GMt s(,)

The optional comma tells most command routines to update the control record with the contents of the Update Variables.

After every command except *GMc the Update and Reply Variables are set to the relative values.

NOTES:-

A 'Bad Command' error message results if the format is unrecognisable.

No action is taken if the sprite number (s) is out of range (1 - 32) or is a sprite that has no images assigned.

A sprite is 'undrawn' by redrawing it on top of the previous position. Ensure that you do not accidentally undraw sprites when using *GMf.

*GMs
set sprite control record

Routine

1
Check valid command and sprite number

2
Update X, Y with X%, Y%

3
Update other parameters if the relevant variables are non-zero

4
If a comma is present then unset the 'drawn' flag

5
Set Reply and Update Variables

6
Return

Normal Use
This command should be used at the start of a program to initialise the sprites that are to be used.

Example
30
I% = 1:A% = 1:X% = 43:Y% = 190:


M% = 1:F% = 1:C% = 0:@GMs 1,

40
I% = 2 : A% = 3:X% = 0:Y% = 40:M% = 1:


F% = 1:C% = 0:*GMs 2,

50
I% = 4:A% = 5:X% = 32:Y% = 7:M% = 1:


F% = 1:C% = 0:*GMs 3,

Other Uses
During the running of a game you may wish to alter a non-active sprite because of the actions of currently active sprites.

Example
210
*GMd 5

220
IF Y% = 200 THEN GOTO 250

230
*GMc 2

240
X% = 34:Y% = 50:*GMs 2

250
...

*GMp
paint sprite on screen

Routine

1
Check valid command and sprite number

2
Undraw sprite at present position

3
If comma present update X, Y with X%, Y% and update the other parameters if the relevant variables are non-zero

4
If flash count is equal to flash rate then alternate the current image flag

5
If collision detection required then test X, Y position against all other sprites

6
If no collision then draw current image at X, Y

7
Set Reply and Update Variables

8
Return

Normal Use

This is the most common method of drawing a sprite on the screen.

Examples
60
*GMp 3

50
*GMc 3

60
X% = 30:Y% = 80:*GMp 3,

50
*GMv 3

60
I% = 6:A% = 7:*GMp 3,

*GMf
fix a sprite copy on screen
Routine
1
Check valid command and sprite number

2
If comma present update X, Y with X%, Y% and update the other variables if the relevant variables are non-zero

3
Draw the current image at X, Y

4
Set the Reply and Update Variables

5
Return

Normal Use
This command should be used to draw copies of a sprite on the screen, normally as part of a static structure; i.e. a ladder or a platform or maze. Please note that such copies are not addressable so they cannot be undrawn, moved or checked for collisions.

Example

40
*GMc 4

50
Y% = 30

60
FOR X% = 0 TO 100

70
*GMf 4,

80
NEXT

*GMr
move sprite right

Routine
1
Check valid command and sprite number

2
Undraw sprite at present position

3
If comma present then update X, Y with X%, Y% and update the other parameters if the relevant variables are non-zero

4
Increase X by 2 for each count of the movement rate

5
If flash count is equal to the flash rate then alternate the current image flag

6
If collision detection required then test X, Y against the other sprites

7
If no collision then draw the current image at X, Y

8
Set the Reply and Update Variables

9
Return

Normal Use

This is one of the four movement commands. If the new X position will cause the sprite to overlap the edge of the screen then the sprite is redrawn at the start of the same line.

Example
70
A$ = INKEY$(10)

80
IF A$="Z" THEN *GMr 1

*GMl
move sprite left

Routine
1
Check valid command and sprite number

2
Undraw sprite at present position

3
If comma present then update X, Y with X%, Y% and update the other parameters if the relevant variables are non-zero

4
Decrease X by 2 for each count of the movement rate

5
If flash count is equal to the flash rate then alternate the current image flag

6
If collision detection required then test X, Y against the other sprites

7
If no collision then draw the current image at X, Y

8
Set the Reply and Update Variables

9
Return

Normal Use
This is one of the four movement commands. If the new X position will cause the sprite to overlap the edge of the screen then the sprite is redrawn at the end of the same line.

Example
70
A$=INKEY$(10)

80
IF A$ = "X" THEN *GMr 1

90
IF A$ = "Z" THEN *GMl 1

*GMu
move sprite up

Routine
1
Check valid command and sprite number

2
Undraw sprite at present position

3
If comma present then update X, Y with X%, Y% and update the other parameters if the relevant variables are non-zero

4
Decrease Y by 2 for each count of the movement rate

5
If flash count is equal to the flash rate then alternate the current image flag

6
If collision detection required then test X, Y against the other sprites

7
If no collision then draw the current image at X, Y

8
Set the Reply and Update Variables

9
Return

Normal Use
This is one of the four movement commands. If the new Y position overlaps the top of the screen the sprite is redrawn at the bottom of the screen on the same column.

Example
70
A$ = INKEY$(10)

80
IF A$ = "X" THEN *GMr 1

90
IF A$ = "Z" THEN *GMl 1

100
IF A$ = ":" THEN *GMu 1

*GMd
move sprite down
Routine
1
Check valid command and sprite number

2
Undraw sprite at present position

3
If comma present then update X, Y with X%, Y% and update the other parameters if the relevant variables are non-zero

4
Increase Y by 2 for each count of the movement rate

5
If flash count is equal to the flash rate then alternate the current image flag

6
If collision detection required then test X, Y against the other sprites

7
If no collision then draw the current image at X, Y

8
Set the Reply and Update Variables

9
Return

Normal Use
This is one of the four movement commands. If the new Y position overlaps the bottom of the screen, the sprite is drawn at the top of the screen on the same column.

Example
70
A$ = INKEY$(10)

80
IF A$ = "X" THEN *GMr 1

90
IF A$ = "Z" THEN *GMl 1

100
IF A$ = ":" THEN *GMu 1

110
IF A$ = "/" THEN *GMd 1

*GMw
wipe sprite off screen

Routine

1
Check valid command and sprite number

2
Undraw sprite at current position

3
Set the Reply and Update Variables

4
Return

Normal Use
This command removes a sprite from the screen

Example
300
*GMw 5

*GMv
set variables to control values
Routine
1
Check valid command and sprite number

2
Set the Reply and Update Variables to the values of the parameters in the sprite control record

3
Return

Normal Use

This command is to enable you to either test the parameters of a non active sprite or set the variables to the current values before altering one of them and then updating the control record.

Example
450
*GMv 15

460
M% = 7:F% = 2:*GMp 15

This example shows the movement rate and flash rate of sprite 15 being altered. The *GMv 15 has set the other variables to the current parameter values and therefore, they remain the same after the update.

*GMc
clear the variables
Routine
1
Check valid command and sprite number
2
Zeroise the Update and Reply Variables except for T% - the command type.

3
Return.

Normal Use

This command does not affect the sprite control record although it requires any valid sprite number in its format. It simply is a shorthand method of clearing the variables.

Example
500
*GMc 1

*GMk
keyboard control

Introduction

This command allows you to replace your keyboard testing routine with a machine code routine that not only tests the keys but also switches the images in the sprite. You need to have set the first eight images ready for direction images and the four Direction Variables to the key values you want testing.

Images 1 and 2 must be for when the sprite moves to the right.

Images 3 and 4 are for movement to the left.

Images 5 and 6 are for upward movement.

Images 7 and 8 are for downward movement.

R%
=
the Upper Case ASCII value of the key you want testing for movement to the right.

L%
=
the key value for left movement.

U%
=
the key value for upward movement.

D%
=
the key value for downward movement.

You can also use this command to test for other keys being pressed by checking the value in K% on return.

Example
60
REPEAT

70
*GMk 1

80
UNTIL K% = 13

*GMk (continued)

Routine
1
Check valid command and sprite number

2
Test the keyboard for 5/100ths of a second.


If no key is pressed then set K% = 255 (&FF) and perform an *GMp


If a key is pressed, its Upper Case ASCII value is set in K%. This value is tested against the four Direction Variables.


If equal to R% then switch the images to 1 and 2 and perform an *GMr


If equal to L% then switch the images to 3 and 4 and perform an *GMl


If equal to U% then switch the images to 5 and 6 and perform an *GMu


If equal to D% then switch the images to 7 and 8 and perform an *GMd


If not equal to these values then perform an *GMp command

3
Return

Note
All the normal facilities are available such as image alteration and collision testing but you cannot update the sprite control record during this command.

VARIABLES
Appendix B

There are three sets of variables:-

Update Variables
These seven variables must not be used for any other purpose.

I%
=
image number

A%
=
alternate image number

X%
=
X position

Y%
=
Y position

M%
=
movement rate

F%
=
alternate (flash) rate

C%
=
collision detection flag

Reply Variables
S%
=
sprite number

T%
=
command type

H%
=
hit type

Z%
=
hit sprite number

K%
=
key pressed value

Direction Variables

R%
=
right movement key value

L%
=
left movement key value

U%
=
upward movement key value

D%
=
downward movement key value

The Update and Reply Variables are set to the relevant values after each command. *GMc clears these variables to zero. S% and T% must not be used for any other purpose but if you do not use collision testing and *GMk then you can use the others in your program.

COLLISIONS
Appendix C

If you have set the collision detection flag with C% = 2 then prior to drawing the sprite each command checks the area this sprite will cover on the screen against the X and Y position of all other sprites in use. There are a number of possible replies which are set as values in H%.

H%
=


0
no collision


1
collision with X = X + columns


2
collision with X + columns = X


3
collision with Y = Y + rows


4
collision with Y + rows = Y


5
collision with X = X and Y = Y


6
collision with X = X


7
collision with Y = Y


8
collision with overlap

The sprite number of the hit sprite is set into Z%.

This is a very powerful feature but it does consume considerable time. The testing stops as soon as a hit is found or as soon as a sprite control record is tested which has no images assigned. therefore, you can help this routine to be efficient if you design the sprites you will be testing as low numbered sprites.

You cannot, unfortunately, test every variation of possible collisions so plan your game with this in mind.

ASCII KEY VALUES
Appendix D

	key
	decimal

value
	key
	decimal

value
	key
	decimal

value

	
	
	
	
	
	

	
	32
	@
	64
	#
	96

	!
	33
	A
	65
	a
	97

	"
	34
	B
	66
	b
	98

	#
	35
	C
	67
	c
	99

	$
	36
	D
	68
	d
	100

	%
	37
	E
	69
	e
	101

	&
	38
	F
	70
	f
	102

	'
	39
	G
	71
	g
	103

	(
	40
	H
	72
	h
	104

	)
	41
	I
	73
	i
	105

	*
	42
	J
	74
	j
	106

	+
	43
	K
	75
	k
	107

	,
	44
	L
	76
	l
	108

	-
	45
	M
	77
	m
	109

	.
	46
	N
	78
	n
	110

	/
	47
	O
	79
	o
	111

	0
	48
	P
	80
	p
	112

	1
	49
	Q
	81
	q
	113

	2
	50
	R
	82
	r
	114

	3
	51
	S
	83
	s
	115

	4
	52
	T
	84
	t
	116

	5
	53
	U
	85
	u
	117

	6
	54
	V
	86
	v
	118

	7
	55
	W
	87
	w
	119

	8
	56
	X
	88
	x
	120

	9
	57
	Y
	89
	y
	121

	:
	58
	Z
	90
	z
	122

	;
	59
	[
	91
	{
	123

	<
	60
	\
	92
	|
	124

	=
	61
	]
	93
	}
	125

	>
	62
	^
	94
	~
	126

	?
	63
	_
	95
	RET
	13

	
	
	
	
	
	


NOTES

